首页> 外文期刊>Journal of chemical theory and computation: JCTC >Combining Linear-Scaling DFT with Subsystem DFT in Born Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution
【24h】

Combining Linear-Scaling DFT with Subsystem DFT in Born Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution

机译:结合线性比例DFT与Born Oppenheimer中的子系统DFT和Ehrenfest分子动力学模拟:从分子到溶液中的病毒

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, methods for the efficient simulation of large systems embedded in a molecular environment are presented. These methods combine linear-scaling (LS) KohnSham (KS) density functional theory (DFT) with subsystem (SS) DFT. LS DFT is efficient for large subsystems, while SS DFT is linear scaling with a smaller prefactor for large sets of small molecules. The combination of SS and LS, which is an embedding approach, can result in a 10-fold speedup over a pure LS simulation for large systems in aqueous solution. In addition to a ground-state BornOppenheimer SS+LS implementation, a time-dependent density functional theory-based Ehrenfest molecular dynamics (EMD) using density matrix propagation is presented that allows for performing nonadiabatic dynamics. Density matrix-based EMD in the SS framework is naturally linear scaling and appears suitable to study the electronic dynamics of molecules in solution. In the LS framework, linear scaling results as long as the density matrix remains sparse during time propagation. However, we generally find a less than exponential decay of the density matrix after a sufficiently long EMD run, preventing LS EMD simulations with arbitrary accuracy. The methods are tested on various systems, including spectroscopy on dyes, the electronic structure of TiO2 nanoparticles, electronic transport in carbon nanotubes, and the satellite tobacco mosaic virus in explicit solution.
机译:在这项工作中,提出了有效模拟嵌入分子环境中的大型系统的方法。这些方法将线性缩放(LS)KohnSham(KS)密度泛函理论(DFT)与子系统(SS)DFT相结合。 LS DFT对于大型子系统是有效的,而SS DFT是线性缩放,并且对于较大的小分子集具有较小的因子。 SS和LS的组合(一种嵌入方法)可以使大型系统在水溶液中的纯LS仿真速度提高10倍。除了基态的BornOppenheimer SS + LS实施方案之外,还提出了使用密度矩阵传播的基于时间依赖密度泛函的基于Ehrenfest分子动力学(EMD)的方法,可以执行非绝热动力学。 SS框架中基于密度矩阵的EMD自然是线性缩放,似乎适合研究溶液中分子的电子动力学。在LS框架中,只要在时间传播期间密度矩阵保持稀疏,就可以进行线性缩放。但是,通常在经过足够长的EMD运行之后,我们发现密度矩阵的衰减小于指数,从而以任意精度阻止了LS EMD仿真。该方法在各种系统上进行了测试,包括染料光谱,TiO2纳米粒子的电子结构,碳纳米管中的电子传输以及显式溶液中的卫星烟草花叶病毒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号