首页> 外文期刊>Journal of chemical theory and computation: JCTC >Why is Benzene Soluble in Water? Role of OH/pi Interaction in Solvation
【24h】

Why is Benzene Soluble in Water? Role of OH/pi Interaction in Solvation

机译:苯为什么溶于水? OH / pi相互作用在溶剂化中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The XH/pi interaction (X = C, N, or O) plays an essential role in a variety of fundamental processes in condensed phase, and it attracts broad interests in the fields of chemistry and biochemistry in recent years. This issue has a direct relevance to an intriguing phenomenon that a benzene molecule exhibits a negative solvation free energy of -0.87 kcal/mol in ambient water though it is a typical nonpolar organic solute. In this work, we developed a novel method to analyze the free energy delta mu due to the electron density fluctuation of a solute in solution to clarify the mechanism responsible for the affinity of benzene to bulk water. Explicitly, the free energy delta mu is decomposed into contributions from sigma and pi electrons in pi-conjugated systems on the basis of the QM/MM method combined with a theory of solutions. With our analyses, the free energy delta mu(pi) arising from the fluctuation of pi electrons in benzene was obtained as -0.94 kcal/mol and found to be the major source of the affinity of benzene to water. Thus, the role of pi electrons in hydration is quantified for the first time with our analyses. Our method was applied to phenyl methyl ether (PME) in water solution to examine the substituent effects of the electron donating group (EDG) on the hydration of a pi-conjugated system. The delocalization effect of the pi electrons on hydration was also investigated performing the decomposition analyses for ethene and 1,3-butadiene molecules in water solutions. It was revealed that the stabilization due to delta mu(pi) for butadiene (-0.76 kcal/mol) is about three times as large as that for ethene (-0.26 kcal/mol), which suggests the importance of the delocalization effect of the pi electrons in mediating the affinity to polar solvent.
机译:XH / pi相互作用(X = C,N或O)在缩合阶段的各种基本过程中起着至关重要的作用,并且近年来引起了化学和生物化学领域的广泛兴趣。这个问题与一个有趣的现象直接相关,尽管苯分子是典型的非极性有机溶质,但在环境水中却表现出负的-0.87 kcal / mol的溶剂化自由能。在这项工作中,我们开发了一种新方法来分析由于溶液中溶质的电子密度波动而产生的自由能增量,以阐明造成苯与大量水亲和力的机理。明确地,基于QM / MM方法并结合溶液理论,将自由能delta mu分解为pi共轭体系中sigma和pi电子的贡献。通过我们的分析,获得了由苯中pi电子的波动引起的自由能δmu(pi)为-0.94 kcal / mol,并且被发现是苯与水亲和力的主要来源。因此,我们的分析首次定量了π电子在水合作用中的作用。我们的方法应用于水溶液中的苯基甲基醚(PME),以研究供电子基团(EDG)对π共轭体系水合的取代作用。还研究了pi电子对水合的离域作用,对水溶液中的乙烯和1,3-丁二烯分子进行了分解分析。结果表明,丁二烯(-0.76 kcal / mol)的δmu(pi)稳定作用是乙烯(-0.26 kcal / mol)的稳定作用的三倍,这表明丁二烯的离域作用很重要。 π电子介导对极性溶剂的亲和力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号