首页> 外文期刊>Journal of chemical theory and computation: JCTC >Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald
【24h】

Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II. Toward Massively Parallel Computations Using Smooth Particle Mesh Ewald

机译:可极化分子动力学中极化能量和相关力的可扩展评估:II。使用光滑粒子网格Ewald进行大规模并行计算

获取原文
获取原文并翻译 | 示例
           

摘要

In this article, we present a parallel implementation of point dipole-based polarizable force fields for molecular dynamics (MD) simulations with periodic boundary conditions (PBC). The smooth particle mesh Ewald technique is combined with two optimal iterative strategies, namely, a preconditioned conjugate gradient solver and a Jacobi solver in conjunction with the direct inversion in the iterative subspace for convergence acceleration, to solve the polarization equations. We show that both solvers exhibit very good parallel performances and overall very competitive timings in an energy and force computation needed to perform a MD step. Various tests on large systems are provided in the context of the polarizable AMOEBA force field as implemented in the newly developed Tinker-HP package, which is the first implementation of a polarizable model that makes large-scale experiments for massively parallel PBC point dipole models possible. We show that using a large number of cores offers a significant acceleration of the overall process involving the iterative methods within the context of SPME and a noticeable improvement of the memory management, giving access to very large systems (hundreds of thousands of atoms) as the algorithm naturally distributes the data on different cores. Coupled with advanced MD techniques, gains ranging from 2 to 3 orders of magnitude in time are now possible compared to nonoptimized, sequential implementations, giving new directions for polarizable molecular dynamics with periodic boundary conditions using massively parallel implementations.
机译:在本文中,我们提出了基于点偶极子的可极化力场的并行实现,用于具有周期性边界条件(PBC)的分子动力学(MD)模拟。光滑粒子网格Ewald技术与两个最佳迭代策略(即预处理共轭梯度求解器和Jacobi求解器)结合,并在迭代子空间中直接进行反演以收敛,从而求解了极化方程。我们表明,这两个求解器在执行MD步骤所需的能量和力计算中均显示出非常好的并行性能和总体上非常具有竞争力的时序。在新开发的Tinker-HP软件包中实现的可极化AMOEBA力场的背景下提供了对大型系统的各种测试,这是可极化模型的首次实现,这使大规模平行PBC点偶极子模型的大规模实验成为可能。我们表明,使用大量内核可以大大加快SPME上下文中涉及迭代方法的整个过程,并显着改善内存管理,从而可以访问非常大的系统(成千上万个原子)。该算法自然将数据分布在不同的内核上。结合先进的MD技术,与未经优化的顺序实现方式相比,现在可以获得2到3个数量级的时间增益,从而为使用大规​​模并行实现方式的具有周期性边界条件的极化分子动力学提供了新的方向。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号