首页> 外文期刊>Journal of chemical theory and computation: JCTC >Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies
【24h】

Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies

机译:RNA四环的计算机折叠:关键力场缺陷的识别。

获取原文
获取原文并翻译 | 示例
           

摘要

The computer-aided folding of biomolecules, particularly RNAs, is one of the most difficult challenges in computational structural biology. RNA tetraloops are fundamental RNA motifs playing key roles in RNA folding and RNA RNA and RNA protein interactions. Although state-of-the-art Molecular Dynamics (MD) force fields correctly describe the native state of these tetraloops as a stable free-energy basin on the microsecond time scale,. enhanced sampling techniques reveal that the native state is not the global free energy minimum, suggesting yet unidentified significant imbalances in the force fields. Here, we tested our ability to fold the RNA tetraloops in various force fields and simulation settings. We employed three different enhanced sampling techniques, namely, temperature replica exchange MD (T-REMD), replica exchange with solute tempering (REST2), and well-tempered metadynamics (WT-MetaD). We aimed to separate problems caused by limited sampling from those due to force-field inaccuracies. We found that none of the contemporary force fields is able to correctly describe folding of the 5'-GAGA-3' tetraloop over a range of simulation conditions. We thus aimed to identify which terms of the force field are responsible for this poor description of TL folding. We showed that at least two different imbalances contribute to this behavior, namely, overstabilization of base phosphate and/or sugar phosphate interactions and underestimated stability of the hydrogen bonding interaction in base pairing. The first artifact stabilizes the unfolded ensemble, while the second one destabilizes the folded state. The former problem might be partially alleviated by reparametrization of the van der Waals parameters of the phosphate oxygens suggested by Case et al., while in order to overcome the latter effect we suggest local potentials to better capture hydrogen bonding interactions.
机译:计算机辅助折叠生物分子,特别是RNA,是计算结构生物学中最困难的挑战之一。 RNA四环是基本的RNA图案,在RNA折叠以及RNA RNA和RNA蛋白质相互作用中起关键作用。尽管最新的分子动力学(MD)力场正确地将这些四环的自然状态描述为微秒级的稳定自由能盆地。增强的采样技术表明,原始状态不是全球自由能最小值,这表明力场中尚未发现的重大失衡现象。在这里,我们测试了在各种力场和模拟设置中折叠RNA四环的能力。我们采用了三种不同的增强采样技术,即温度副本交换MD(T-REMD),具有溶质回火的副本交换(REST2)和良好的元动力学(WT-MetaD)。我们的目标是将有限采样所导致的问题与力场不正确所导致的问题分开。我们发现,当代力场都无法正确描述5'-GAGA-3'四环在一系列模拟条件下的折叠。因此,我们的目的是确定力场的哪些项是对TL折叠这种不良描述的原因。我们表明,至少有两种不同的失衡促成此行为,即碱基磷酸和/或糖磷酸酯相互作用的过度稳定以及碱基配对中氢键相互作用的稳定性被低估。第一个伪像稳定了展开的合奏,而第二个伪像则使折叠状态不稳定。前者的问题可以通过Case等人提出的磷酸盐氧的范德华参数的重新参数化来部分缓解,而为了克服后者的影响,我们建议使用局部电位来更好地捕获氢键相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号