首页> 外文期刊>Journal of chemical theory and computation: JCTC >Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?
【24h】

Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition Metals?

机译:与关于键与3d过渡金属的解离能的最佳现有实验数据相比,实用标准耦合簇计算是否比具有当前可用功能的Kohn-Sham计算更好?

获取原文
获取原文并翻译 | 示例
           

摘要

Coupled-cluster (CC) methods have been extensively used as the high-level approach in quantum electronic structure theory to predict various properties of molecules when experimental results are unavailable. It is often assumed that CC methods, if they include at least up to connected-triple-excitation quasiperturbative corrections to a full treatment of single and double excitations (in particular, CCSD(T)), and a very large basis set, are more accurate than KohnSham (KS) density functional theory (DFT). In the present work, we tested and compared the performance of standard CC and KS methods on bond energy calculations of 20 3d transition metal-containing diatomic molecules against the most reliable experimental data available, as collected in a database called 3dMLBE20. It is found that, although the CCSD(T) and higher levels CC methods have mean unsigned deviations from experiment that are smaller than most exchange-correlation functionals for metalligand bond energies of transition metals, the improvement is less than one standard deviation of the mean unsigned deviation. Furthermore, on average, almost half of the 42 exchange-correlation functionals that we tested are closer to experiment than CCSD(T) with the same extended basis set for the same molecule. The results show that, when both relativistic and corevalence correlation effects are considered, even the very high-level (expensive) CC method with single, double, triple, and perturbative quadruple cluster operators, namely, CCSDT(2)(Q), averaged over 20 bond energies, gives a mean unsigned deviation (MUD(20) = 4.7 kcal/mol when one correlates only valence, 3p, and 3s electrons of transition metals and only valence electrons of ligands, or 4.6 kcal/mol when one correlates all core electrons except for 1s shells of transition metals, S, and Cl); and that is similar to some good xc functionals (e.g., B97-1 (MUD(20) = 4.5 kcal/mol) and PW6B95 (MUD(20) = 4.9 kcal/mol)) when the same basis set is used. We found that, for both coupled cluster calculations and KS calculations, the T-1 diagnostics correlate the errors better than either the M diagnostics or the B-1 DFT-based diagnostics. The potential use of practical standard CC methods as a benchmark theory is further confounded by the finding that CC and DFT methods usually have different signs of the error. We conclude that the available experimental data do not provide a justification for using conventional single-reference CC theory calculations to validate or test xc functionals for systems involving 3d transition metals.
机译:耦合簇(CC)方法已被广泛用作量子电子结构理论中的高级方法,以在无法获得实验结果时预测分子的各种特性。通常认为,如果CC方法至少包括多达三重连接的准微扰校正,以完全处理单激发和双激发(尤其是CCSD(T)),并且具有很大的基础集,则通常会认为CC方法更多。比KohnSham(KS)密度泛函理论(DFT)准确。在当前的工作中,我们测试了标准的CC和KS方法在20个含3d过渡金属的双原子分子的键能计算上的性能,并与在3dMLBE20数据库中收集的最可靠的实验数据进行了比较。结果发现,尽管CCSD(T)和更高水平的CC方法与实验的平均无符号偏差小于过渡金属的金属配体键能的大多数交换相关函数,但改进小于平均值的一个标准偏差。无符号偏差。此外,平均而言,我们测试的42个交换相关功能中,几乎有一半比CCSD(T)更接近于实验,而CCSD(T)具有针对相同分子的相同扩展基础集。结果表明,当同时考虑相对论和共价相关效应时,即使是具有单,双,三和扰动四重群集算子(即CCSDT(2)(Q))的非常高级(昂贵)CC方法,也要平均超过20个键能,则给出平均无符号偏差(MUD(20)= 4.7 kcal / mol,当一个仅与过渡金属的价电子,3p和3s电子和配体的价电子相关时,或仅与一个配体的价电子电子相关时,或4.6 kcal / mol核心电子,过渡金属S和Cl的1s壳除外);当使用相同的基础集时,这类似于某些良好的xc功能(例如B97-1(MUD(20)= 4.5 kcal / mol)和PW6B95(MUD(20)= 4.9 kcal / mol))。我们发现,对于耦合聚类计算和KS计算,T-1诊断比M诊断或基于B-1 DFT的诊断对错误的关联更好。通过发现CC和DFT方法通常具有不同的错误符号,进一步混淆了实际使用标准CC方法作为基准理论的可能性。我们得出的结论是,可用的实验数据不能为使用常规单参考CC理论计算为涉及3d过渡金属的系统验证或测试xc功能提供依据。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号