...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Reactive Force Field Study of Li/C Systems for Electrical Energy Storage
【24h】

Reactive Force Field Study of Li/C Systems for Electrical Energy Storage

机译:储能Li / C系统的反力场研究

获取原文
获取原文并翻译 | 示例
           

摘要

Graphitic carbon is still the most ubiquitously used anode material in Li-ion batteries. In spite of its ubiquity, there are few theoretical studies that fully capture the energetics and kinetics of Li in graphite and related nanostructures at experimentally relevant length, time-scales, and Li-ion concentrations. In this paper, we describe the development and application of a ReaxFF reactive force field to describe Li interactions in perfect and defective carbon-based materials using atomistic simulations. We develop force field parameters for Li-C systems using van der Waals-corrected density functional theory (DFT). Grand canonical Monte Carlo simulations of Li intercalation in perfect graphite with this new force field not only give a voltage profile in good agreement with known experimental and DFT results but also capture the in-plane Li ordering and interlayer separations for stage I and II compounds. In defective graphite, the ratio of Li/C (i.e., the capacitance increases and voltage shifts) both in proportion to the concentration of vacancy defects and metallic lithium is observed to explain the lithium plating seen in recent experiments. We also demonstrate the robustness of the force field by simulating model carbon nanostructures (i.e., both 0D and 1D structures) that can be potentially used as battery electrode materials. Whereas a 0D defective onion-like carbon facilitates fast charging/discharging rates by surface Li adsorption, a 1D defect-free carbon nanorod requires a critical density of Li for intercalation to occur at the edges. Our force field approach opens the opportunity for studying energetics and kinetics of perfect and defective Li/C structures containing thousands of atoms as a function of intercalation. This is a key step toward modeling of realistic carbon materials for energy applications.
机译:石墨碳仍然是锂离子电池中使用最广泛的阳极材料。尽管它无处不在,但很少有理论研究能够在实验上相关的长度,时间尺度和锂离子浓度下完全捕获锂在石墨和相关纳米结构中的能量和动力学。在本文中,我们描述了ReaxFF反作用力场的开发和应用,以利用原子模拟描述完美和有缺陷的碳基材料中的Li相互作用。我们使用范德华校正的密度泛函理论(DFT)为Li-C系统开发力场参数。用这种新的力场对完美石墨中的锂嵌入进行经典的蒙特卡洛模拟,不仅给出了与已知实验结果和DFT结果吻合的电压曲线,而且还捕获了I和II期化合物的面内Li有序化和层间分离。在缺陷石墨中,观察到Li / C之比(即,电容增加和电压漂移)均与空位缺陷和金属锂的浓度成正比,以解释最近实验中看到的锂镀层。我们还通过模拟可潜在用作电池电极材料的模型碳纳米结构(即0D和1D结构)来证明力场的鲁棒性。 0D缺陷洋葱状碳可通过表面Li吸附促进快速充电/放电速率,而1D无缺陷碳纳米棒则需要临界密度的Li才能在边缘发生插层。我们的力场方法为研究包含数千个原子的完美和有缺陷的Li / C结构的能量和动力学提供了机会,该Li / C结构是嵌入的函数。这是朝用于能源应用的实际碳材料建模迈出的关键一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号