首页> 外文期刊>Journal of chemical theory and computation: JCTC >Variational versus Perturbational Treatment of Spin-Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange
【24h】

Variational versus Perturbational Treatment of Spin-Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange

机译:电子g因子的相对论密度泛函计算中自旋-轨道耦合的变分与微扰处理:自旋极化和精确交换的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Different approaches are compared for relativistic calculations of electronic g factors of molecules with light atoms, transition metal complexes, and selected complexes with actinides, using density functional theory (DFT) and Hartree—Fock (HF) theory. The comparison includes functionals with range-separated exchange. Within the variationally stable zeroth-order regular approximation (ZORA) relativistic framework, g factors are obtained with a linear response (LR) method where spin—orbit (SO) coupling is treated as a linear perturbation, a spin-polarized approach based on magnetic anisotropy (MA) that includes SO coupling variationally, and a quasi-restricted variational SO method previously devised by van Lenthe, van der Avoird, and Wormer (LWA). The MA and LWA approaches were implemented in the open-source NWChem quantum chemistry package. We address the importance of electron correlation (DFT vs HF), the importance of including spin polarization in the g tensor methodology, the question of whether the use of nonrelativistic spin density functionals is adequate for such calculations, and the importance of treating spin—orbit coupling beyond first-order. For selected systems, the extent of the DFT delocalization error is explicitly investigated via calculations of the energy as a function of fractional electron numbers. For a test set of small molecules with light main group atoms, all levels of calculation perform adequately as long as there is no energetic near-degeneracy among occupied and unoccupied orbitals. The interplay between different factors determining the accuracy of calculated g factors becomes more complex for systems with heavy elements such as third row transition metals and actinides. The MA approach is shown to perform acceptably well for a wide range of scenarios.
机译:使用密度泛函理论(DFT)和Hartree-Fock(HF)理论,比较了不同方法对具有轻原子,过渡金属配合物和选定的with系元素配合物的电子g因子进行相对论计算。比较包括具有范围分隔交换的功能。在变化稳定的零阶正则逼近(ZORA)相对论框架内,通过线性响应(LR)方法获得g因子,其中自旋-轨道(SO)耦合被视为线性摄动,这是基于磁的自旋极化方法各向异性(MA),包括变化耦合的SO,以及以前由van Lenthe,van der Avoird和Wormer(LWA)设计的准限制性变化SO方法。 MA和LWA方法在开源NWChem量子化学软件包中实现。我们讨论了电子相关性(DFT与HF)的重要性,在g张量方法中包括自旋极化的重要性,使用非相对论性自旋密度函数是否足以进行此类计算以及处理自旋轨道的重要性的问题耦合超出一阶。对于选定的系统,通过计算作为分数电子数的函数的能量,明确研究了DFT离域误差的程度。对于具有轻主族原子的小分子的测试集,只要在占用和未占用的轨道之间没有高能的近简并列,所有级别的计算都可以正常执行。对于具有重元素(例如第三行过渡金属和act系元素)的系统,决定计算g因子准确性的不同因子之间的相互作用变得更加复杂。事实证明,MA方法在各种情况下都能表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号