...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Further Development of the FFT-based Method for Atomistic Modeling of Protein Folding and Binding under Crowding: Optimization of Accuracy and Speed
【24h】

Further Development of the FFT-based Method for Atomistic Modeling of Protein Folding and Binding under Crowding: Optimization of Accuracy and Speed

机译:拥挤条件下基于FFT的蛋白质折叠和结合原子建模的方法的进一步发展:准确性和速度的优化

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, we (Qin, S.; Zhou, H. X. J. Chem. Theory Comput. 2013, 9, 4633-4643) developed the EFT- based method for Modeling Atomistic Proteins—crowder interactions, henceforth FMAP. Given its potential wide use for calculating effects of crowding on protein folding and binding free energies, here we aimed to optimize the accuracy and speed of FMAP. FMAP is based on expressing protein— crowder interactions as correlation functions and evaluating the latter via fast Fourier transform (FFT). The numerical accuracy of FFT improves as the grid spacing for discretizing space is reduced, but at increasing computational cost. We sought to speed up FMAP calculations by using a relatively coarse grid spacing of 0.6 A and then correcting for discretization errors. This strategy was tested for different types of interactions (hard-core repulsion, nonpolar attraction, and electrostatic interaction) and over a wide range of protein—crowder systems. We were able to correct for the numerical errors on hard-core repulsion and nonpolar attraction by an 8% inflation of atomic hard-core radii and on electrostatic interaction by a 5% inflation of the magnitudes of protein atomic charges. The corrected results have higher accuracy and enjoy a speedup of more than 100-fold over those obtained using a fine grid spacing of 0.15 A. With this optimization of accuracy and speed, FMAP may become a practical tool for realistic modeling of protein folding and binding in cell-like environments.
机译:最近,我们(Qin,S.; Zhou,H. X. J. Chem。Theory Comput。2013,9,4633-4643)开发了基于EFT的原子蛋白—人群相互作用模型化方法,此后称为FMAP。鉴于其潜在的广泛用途,可用于计算拥挤对蛋白质折叠和结合自由能的影响,因此我们旨在优化FMAP的准确性和速度。 FMAP基于表达蛋白质—拥挤子相互作用作为相关函数,并通过快速傅立叶变换(FFT)对其进行评估。 FFT的数值精度随着用于离散空间的网格间距的减小而提高,但是计算成本却增加了。我们试图通过使用相对较粗的0.6 A网格间距来加快FMAP计算,然后校正离散化误差。该策略已针对不同类型的相互作用(硬核排斥,非极性吸引和静电相互作用)以及广泛的蛋白质-拥挤系统进行了测试。我们能够通过原子硬核半径的8%膨胀来校正硬核排斥和非极性吸引的数值误差,以及通过蛋白质原子电荷量的5%膨胀来校正静电相互作用的数值误差。校正后的结果具有更高的准确度,并且比使用0.15 A的精细网格间距所获得的结果要高100倍以上。通过这种精确度和速度的优化,FMAP可以成为实际建模蛋白质折叠和结合的实用工具在类似细胞的环境中

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号