...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials
【24h】

Reactive Molecular Dynamics Simulation of Fullerene Combustion Synthesis: ReaxFF vs DFTB Potentials

机译:富勒烯燃烧合成的反应分子动力学模拟:ReaxFF与DFTB势

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamic fullerene self-assembly process during benzene combustion was studied using classical Reactive Force Field (ReaxFF) nonequllibrium molecular dynamics (MD) simulations. In order to drive the combustion process, the hydrogen to carbon (H/C) ratio was gradually reduced during the course of the MD simulations. Target temperatures of 2500 and 3000 K were maintained by using a Berendsen thermostat. Simulation conditions and hydrogen removal strategies were chosen to match closely a previous quantum chemical MD (QM/MD) study based on the density-functional tight-binding (DFTB) potential (Saha et al. ACS Nano 2009, 3, 2241) to allow a comparison between the two different potentials. Twenty trajectories were computed at each target temperature, and hydrocarbon cluster size, C_xH_y composition, average carbon cluster curvature, carbon hybridization type, and ring count statistics were recorded as a function of time. Similarly as in the QM/MD simulations, only giant fullerene cages in the range from 155 to 212 carbon atoms self-assembled, and no C_(60) cages were observed. The most notable difference concerned the time required for completing cage self-assembly: Depending on temperature, it takes between 50 and ISO ps in DFTB/MD simulations but never less than 100 ps and frequently several 100s ps in ReaxFF/MD simulations. In the present system, the computational cost of ReaxFF/MD is about 1 order of magnitude lower than that of the corresponding DFTB/MD. Overall, the ReaxFF/MD simulations method paints a qualitatively similar picture of fullerene formation in benzene combustion when compared to direct MD simulations based on the DFTB potential.
机译:使用经典的反应力场(ReaxFF)非平衡分子动力学(MD)模拟研究了苯燃烧过程中的动态富勒烯自组装过程。为了驱动燃烧过程,在MD模拟过程中逐渐降低了氢碳比(H / C)。使用Berendsen恒温器可维持2500和3000 K的目标温度。选择模拟条件和除氢策略以与先前基于密度泛函紧密结合(DFTB)势的量子化学MD(QM / MD)研究(Saha等人ACS Nano 2009,3,2241)紧密匹配两种不同潜力之间的比较。在每个目标温度下计算了20条轨迹,并且记录了烃簇大小,C_xH_y组成,平均碳簇曲率,碳杂化类型和环数统计作为时间的函数。与QM / MD模拟类似,仅自组装的碳原子范围在155至212的巨型富勒烯笼,未观察到C_(60)笼。最显着的差异涉及完成笼架自组装所需的时间:根据温度,DFTB / MD模拟中的时间在50到ISO ps之间,但ReaxFF / MD模拟中的时间至少在100 ps到100 ps之间。在本系统中,ReaxFF / MD的计算成本比相应的DFTB / MD的计算成本低约1个数量级。总体而言,与基于DFTB电位的直接MD模拟相比,ReaxFF / MD模拟方法从质量上描绘了苯燃烧过程中富勒烯形成的相似情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号