首页> 外文期刊>Journal of chemical theory and computation: JCTC >Further Optimization of a Hybrid United-Atom and Coarse-Grained Force Field for Folding Simulations: Improved Backbone Hydration and Interactions between Charged Side Chains
【24h】

Further Optimization of a Hybrid United-Atom and Coarse-Grained Force Field for Folding Simulations: Improved Backbone Hydration and Interactions between Charged Side Chains

机译:用于折叠模拟的混合联合原子和粗粒力场的进一步优化:改进的骨干水化和带电侧链之间的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

PACE, a hybrid force field that couples united-atom protein models with coarse-grained (CG) solvent (J. Chem. Theory Comput. 2010, 6, 3373), has been further optimized, aiming to improve its efficiency for folding simulations. Backbone hydration parameters have been reoptimized based on hydration free energies of polyalanyl peptides through atomistic simulations. Also, atomistic partial charges from all-atom force fields were combined with PACE to provide a more realistic description of interactions between charged groups. Using replica exchange molecular dynamics, ab initio folding using the new PACE has been achieved for seven small proteins (16—23 residues) with different structural motifs. Experimental data about folded states, such as their stability at room temperature, melting point, and nuclear magnetic resonance nuclear Overhauser effect constraints, were also well reproduced. Moreover, a systematic comparison of folding kinetics at room temperature has been made with experiments, through standard molecular dynamics simulations, showing that the new PACE may accelerate the actual folding kinetics 5-10-fold, permitting now the study of folding mechanisms. In particular, we used the new PACE to fold a 73-residue protein, α3D, in multiple 10—30 μs simulations, to its native states (C_a root-mean-square deviation of ~0.34 nm). Our results suggest the potential applicability of the new PACE for the study of folding and dynamics of proteins.
机译:PACE是一种将联合原子蛋白质模型与粗粒(CG)溶剂耦合的混合力场(J. Chem。Theory Comput。2010,6,3373),已得到进一步优化,旨在提高折叠模拟的效率。通过原子模拟,基于聚丙氨酰肽的水合自由能,对骨干水合参数进行了重新优化。同样,将来自所有原子力场的原子性部分电荷与PACE结合使用,可以更真实地描述带电基团之间的相互作用。使用副本交换分子动力学,已经使用新的PACE从头开始折叠了具有不同结构基序的七个小蛋白质(16-23个残基)。还很好地复制了有关折叠状态的实验数据,例如它们在室温下的稳定性,熔点和核磁共振核Overhauser效应约束。此外,通过标准分子动力学模拟,通过实验对室温下的折叠动力学进行了系统的比较,结果表明,新的PACE可以将实际的折叠动力学加速5-10倍,从而现在可以研究折叠机理。特别是,我们使用新的PACE在多个10-30μs模拟中将73个残基的蛋白质α3D折叠成其原始状态(C_a均方根偏差为〜0.34 nm)。我们的结果表明,新的PACE在蛋白质折叠和动力学研究中的潜在适用性。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号