首页> 外文期刊>Journal of cardiovascular electrophysiology >ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
【24h】

ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.

机译:ATX-II对人左心室楔形计算模型中M细胞的表观位置有影响。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

INTRODUCTION: The apparent location of the myocytes (M cells) with the longest action potential duration (APD) in a canine left ventricular (LV) wedge have been reported to shift after application of a sea anemone toxin, ATX-II. This toxin slows inactivation of I(Na) and thus prolongs APD. Thus, M cells may exhibit dynamic functional states, rather than being a static, anatomically discrete, myocyte population. In this study, we attempted to further define and understand this phenomenon using a mathematical model of the human ventricular myocyte action potential incorporated into an in silico "wedge" preparation. Our simulations demonstrate that even under conditions of a fixed population and ratio of epicardial, M, and endocardial myocytes, the apparent anatomical position (transmural location) of the myocytes with the longest APD can shift following ATX-II treatment. This arises because the ATX-II effect, modeled as a small increase in the late or persistent Na(+) current, and consequent prolongation of APD significantly changes the electrotonic interactions between ventricular myocytes in this LV wedge preparation. METHODS AND RESULTS: This LV wedge model is based on bidomain equations. It corresponds to a rectangular tissue immersed in a passive and isotropic medium that represents the superfusion bath. In this theoretical work, the three known different and discrete populations of myocytes in the human left ventricle have been included: the epicardial, M, and endocardial cells. The effects of ATX-II on I(Na) were simulated by altering the voltage-dependent steady-state inactivation of the parameters h (fast gate) and j (slow gate). As a result, in these ATX-II simulations a persistent late Na(+) current was generated in all three types of ventricular myocytes. However, the APDs were prolonged in a heterogeneous pattern. Our simulations demonstrate that after the ATX-II effects develop, alterations in transmural electrotonic interactions can produce changes in the transmural location of myocytes with the longest APD. CONCLUSIONS: The combination of intercellular electrotonic interactions, which tend to reduce and smooth out the discrete transmural APD variations, and the heterogeneous effects of ATX-II, which preferentially prolong the APD of M cells, can shift the location of the ventricular myocytes. This shift results in significantly altered transmural patterns of action potential durations, which would be expected to change localized refractory period and excitability. These cellular changes give rise to alterations in the corresponding surface electrograms and may change the overall substrates for conduction and rhythm disturbances.
机译:简介:据报道,使用海葵毒素ATX-II后,犬左心室(LV)楔形中动作电位持续时间(APD)最长的肌细胞(M细胞)的表观位置发生了变化。该毒素减慢了I(Na)的失活,从而延长了APD。因此,M细胞可以表现出动态的功能状态,而不是静态的,解剖学上离散的肌细胞群。在这项研究中,我们尝试使用纳入计算机“楔形”制剂的人心室肌细胞动作电位的数学模型进一步定义和理解这种现象。我们的模拟表明,即使在固定数量的心外膜,M和心内膜心肌细胞的条件下,APD最长的心肌细胞在ATX-II处理后的表观解剖位置(跨壁位置)也会发生变化。出现这种现象的原因是,模拟为晚期或持续性Na(+)电流的小幅增加的ATX-II效应以及随之而来的APD延长显着改变了该LV楔形制备中心室肌细胞之间的电声相互作用。方法和结果:该LV楔模型基于双域方程。它对应于浸入代表超融合浴的被动各向同性介质中的矩形组织。在这项理论工作中,已经包括了人类左心室中三种已知的不同和离散的心肌细胞群:心外膜,M和心内膜细胞。通过更改参数h(快速栅极)和j(慢速栅极)的电压相关稳态失活,模拟了ATX-II对I(Na)的影响。结果,在这些ATX-II模拟中,在所有三种类型的心室肌细胞中均产生持续的晚期Na(+)电流。但是,APD以异质模式延长。我们的模拟表明,在ATX-II效应发展之后,跨壁电声相互作用的改变会导致APD最长的心肌细胞的跨壁位置发生变化。结论:细胞间电声相互作用的结合可减少和消除离散的跨壁APD变异,而ATX-II的异质性效应可延长M细胞的APD,可改变心室肌细胞的位置。这种转变导致动作电位持续时间的透壁模式发生明显改变,这有望改变局部不应期和兴奋性。这些细胞变化引起相应的表面电图的变化,并可能改变整个基底的传导和节律紊乱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号