...
【24h】

Micro- and nano-morphological modification of aluminum surface for adhesive bonding to polymeric composites

机译:铝表面的微观和纳米形态改性,用于粘合到聚合物复合材料

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of the present study is to demonstrate the effect of micro- and nano-morphological modifications of aluminum surface on adhesion strength. While former studies have investigated surface morphological changes after employing various surface treatment methods, this study proposes a micro-patterning method to provide designed surface topography for adhesion strength enhancement. An oxalic acid-based anodizing process was also applied after micro-scale patterning on aluminum surface to incorporate nanopores into the micro-patterned surface topography. The adhesion strength of an aluminum/composite bond was assessed in terms of interfacial fracture toughness under various mixed-mode loading conditions using a single-leg bending test. Micro-scale periodic grooves incorporated with nanoporous surface morphology significantly improved the adhesion strength. Although bond strength enhancement can be attained in any mixed mode loading condition, the surface topography modification technique is more effective in sliding mode dominant loadings than in opening-mode dominant loadings. The bond strength improvement is explained by the increased implementation of mechanical interlock mechanism which increases the resistance for crack growth by altering the trajectory of crack propagation from the bi-material interface toward the polymeric composite.
机译:本研究的目的是证明铝表面的微观和纳米形态改性对粘合强度的影响。虽然以前的研究已经调查了采用各种表面处理方法后的表面形态变化,但这项研究提出了一种微图案化方法来提供设计的表面形貌,以增强粘合强度。在铝表面进行微细图案化之后,还采用了基于草酸的阳极氧化工艺,以将纳米孔并入微图案化的表面形貌中。使用单腿弯曲试验,在各种混合模式载荷条件下,根据界面断裂韧性评估了铝/复合材料键的粘合强度。结合纳米多孔表面形态的微型周期性沟槽可显着提高粘合强度。尽管可以在任何混合模式载荷条件下实现粘结强度的提高,但表面形貌修饰技术在滑动模式主导载荷下比在打开模式主导载荷下更有效。通过增加机械互锁机制的实施来解释粘结强度的提高,该机制通过改变从双材料界面向聚合物复合材料的裂纹扩展轨迹来增加裂纹扩展的阻力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号