首页> 外文期刊>Journal of artificial organs: The official journal of the Japanese Society for Artificial Organs >Continuous-flow pump model study: The effect on pump performance of pump characteristics and cardiovascular conditions
【24h】

Continuous-flow pump model study: The effect on pump performance of pump characteristics and cardiovascular conditions

机译:连续流泵模型研究:泵性能和心血管状况对泵性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This model study evaluates the effect of pump characteristics and cardiovascular data on hemodynamics in atrio-aortic VAD assistance. The model includes a computational circulatory sub-model and an electrical sub-model representing two rotary blood pumps through their pressure-flow characteristics. The first is close to a pressure generator - PG (average flow sensitivity to pressure variations, -0.047 l mmHg-1); the second is closer to a flow generator - FG (average flow sensitivity to pressure variations, -0.0097 l mmHg-1). Interaction with VAD was achieved by means of two interfaces, behaving as impedance transformers. The model was verified by use of literature data and VAD onset conditions were used as a control for the experiments. Tests compared the two pumps, at constant pump speed, in different ventricular and circulatory conditions: maximum ventricular elastance (0.44-0.9 mmHg cm-3), systemic peripheral resistance (781-1200 g cm -4 s-1), ventricular diastolic compliance C p (5-10-50 cm3 mmHg-1), systemic arterial compliance (0.9-1.8 cm3 mmHg-1). Analyzed variables were: arterial and venous pressures, flows, ventricular volume, external work, and surplus hemodynamic energy (SHE). The PG pump generated the highest SHE under almost all conditions, in particular for higher C p (+50 %). PG pump flow is also the most sensitive to E max and C p changes (-26 and -33 %, respectively). The FG pump generally guarantees higher external work reduction (54 %) and flow less dependent on circulatory and ventricular conditions. The results are evidence of the importance of pump speed regulation with changing ventricular conditions. The computational sub-model will be part of a hydro-numerical model, including autonomic controls, designed to test different VADs.
机译:该模型研究评估了主动脉VAD辅助中泵的特性和心血管数据对血液动力学的影响。该模型包括一个计算循环子模型和一个电动子模型,该子模型通过两个旋转血泵的压力-流量特性来表示它们。第一个靠近压力发生器PG(对压力变化的平均流量敏感度,-0.047 l mmHg-1);第二个更接近流量发生器-FG(对压力变化的平均流量敏感度,-0.0097 l mmHg-1)。与VAD的交互是通过两个接口来实现的,它们表现为阻抗互感器。通过使用文献数据验证该模型,并使用VAD起始条件作为实验的对照。测试在不同的心室和循环条件下以恒定的泵速比较了两个泵:最大心室弹性(0.44-0.9 mmHg cm-3),系统性外周阻力(781-1200 g cm -4 s-1),心室舒张期顺应性C p(5-10-50 cm3 mmHg-1),全身动脉顺应性(0.9-1.8 cm3 mmHg-1)。分析变量为:动脉和静脉压力,流量,心室容积,外部功和剩余血流动力学能(SHE)。 PG泵几乎在所有条件下都产生最高的SHE,特别是对于较高的C p(+50%)。 PG泵流量也对E max和C p变化(分别为-26和-33%)最敏感。 FG泵通常可确保较高的外部功降低率(54%),并且流量较少,取决于循环和心室状况。结果证明了随着心室状况的变化,调节泵速度的重要性。计算子模型将成为液压数字模型的一部分,包括自主控制,旨在测试不同的VAD。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号