...
首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration
【24h】

Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration

机译:降解诱导的用于软组织再生的电纺聚酯-聚氨酯支架的机械性能变化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The aim of this study was the in vitro investigation of the change in mechanical properties of a fast-degrading electro-spun polymeric scaffold for the use in soft tissue regenerative implants. Tubular scaffolds were electro-spun from a DegraPol~R D30 polyesther-urethane solution (target outer diameter: 5.0 mm; scaffold wall thickness: 0.99 +- 0.18 mm). Scaffold samples were subjected to hydrolytic in vitro degradation for up to 34 days. The fiber network structure and fiber surfaces were inspected on scanning electron micrographs. Following vacuum drying and determination of mass, flat samples (9.69 +- 0.21 x 18.47 +- 2.62 mm, n = 5) underwent uni-axial tensile testing (5 load cycles, strain e = 0 to 20%; final extension to failure) in circumferential scaffold direction after 5, 10, 14, 18, 22, 26, 30, and 34 days of degradation. Scaffold mass did not change with degradation. Maximum elastic modulus, maximum stress and associated strain were E_(max) = 1.14 +- 0.23 MPa, sigma_(max) = 0.52 +- 0.12 MPa and epsilon_(max) = 176.8 +- 21.9% before degradation and E_(max) = 0.43 +-0.26 MPa, sigma_(max) = 0.033 ? 0.028 MPa and epsilon_(max)= 24.6 ? 3.0% after 34 days of degradation. The deterioration of mechanical properties was not reflected in the ultrastructural surface morphology of the fibers. The current exploratory study provides a basis for the development of constitutive computational models of biodegradable scaffolds with future extension of the investigation most importantly to capture mechanical effects of regenerating tissue. Future studies will include degradation in biological fluids and assessment of molecular weight for an advanced understanding of the material changes during degradation.
机译:这项研究的目的是体外研究用于软组织再生植入物的快速降解电纺聚合物支架的机械性能变化。从DegraPol_R D30聚醚-氨基甲酸酯溶液(目标外径:5.0mm;支架壁厚:0.99±0.18mm)电纺制管状支架。将支架样品进行体外水解长达34天。在扫描电子显微照片上检查纤维网络结构和纤维表面。真空干燥并测定质量后,对扁平样品(9.69 +-0.21 x 18.47 +-2.62 mm,n = 5)进行单轴拉伸测试(5个载荷循环,应变e = 0至20%;最终延伸至破坏)在降解5、10、14、18、22、26、30和34天后沿周向支架方向移动。支架质量没有随降解而变化。最大弹性模量,最大应力和相关应变为E_(max)= 1.14 +-0.23 MPa,sigma_(max)= 0.52 +-0.12 MPa和epsilon_(max)= 176.8 +-降解前的21.9%和E_(max)= 0.43 + -0.26 MPa,sigma_(max)= 0.033? 0.028 MPa和epsilon_(max)= 24.6?降解34天后为3.0%。机械性能的劣化没有反映在纤维的超微结构表面形态中。当前的探索性研究为开发可生物降解支架的本构计算模型提供了基础,而该研究的未来扩展最重要的是捕获再生组织的机械作用。未来的研究将包括生物流体中的降解和分子量评估,以便对降解过程中的材料变化有更深入的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号