首页> 外文期刊>Journal of Biomechanics >Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.
【24h】

Fast and accurate specimen-specific simulation of trabecular bone elastic modulus using novel beam-shell finite element models.

机译:使用新型的梁壳有限元模型快速准确地进行小梁骨弹性模量的标本特定模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

Elastic modulus and strength of trabecular bone are negatively affected by osteoporosis and other metabolic bone diseases. Micro-computed tomography-based beam models have been presented as a fast and accurate way to determine bone competence. However, these models are not accurate for trabecular bone specimens with a high number of plate-like trabeculae. Therefore, the aim of this study was to improve this promising methodology by representing plate-like trabeculae in a way that better reflects their mechanical behavior. Using an optimized skeletonization and meshing algorithm, voxel-based models of trabecular bone samples were simplified into a complex structure of rods and plates. Rod-like and plate-like trabeculae were modeled as beam and shell elements, respectively, using local histomorphometric characteristics. To validate our model, apparent elastic modulus was determined from simulated uniaxial elastic compression of 257 cubic samples of trabecular bone (4mmx4mmx4mm; 30mum voxel size; BIOMED I project) in three orthogonal directions using the beam-shell models and using large-scale voxel models that served as the gold standard. Excellent agreement (R(2)=0.97) was found between the two, with an average CPU-time reduction factor of 49 for the beam-shell models. In contrast to earlier skeleton-based beam models, the novel beam-shell models predicted elastic modulus values equally well for structures from different skeletal sites. It allows performing detailed parametric analyses that cover the entire spectrum of trabecular bone microstructures.
机译:骨质疏松症和其他代谢性骨病会对小梁骨的弹性模量和强度产生负面影响。基于微计算机断层扫描的射束模型已经被提出来作为一种快速而准确的确定骨能力的方法。但是,这些模型不适用于具有大量板状小梁的小梁骨标本。因此,本研究的目的是通过以更好地反映其机械行为的方式代表板状小梁来改善这种有前途的方法。使用优化的骨架化和网格划分算法,将基于体素的小梁骨样品模型简化为杆和板的复杂结构。杆状和板状小梁分别使用局部组织形态学特征建模为梁和壳单元。为了验证我们的模型,使用梁壳模型和大型体素模型通过三个正交方向对257立方小梁骨(4mmx4mmx4mm;体素大小为30mum; BIOMED I项目)的模拟单轴弹性压缩确定了表观弹性模量。作为黄金标准。两者之间发现了极好的一致性(R(2)= 0.97),对于梁壳模型,平均CPU时间减少因子为49。与早期的基于骨架的梁模型相比,新颖的梁壳模型对于来自不同骨骼部位的结构预测的弹性模量值均相同。它允许执行涵盖小梁骨微观结构整个光谱的详细参数分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号