首页> 外文期刊>Journal of Biomechanics >A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.
【24h】

A fatigue microcrack alters fluid velocities in a computational model of interstitial fluid flow in cortical bone.

机译:疲劳微裂纹会改变皮质骨间质液流动的计算模型中的流体速度。

获取原文
获取原文并翻译 | 示例
           

摘要

Targeted remodeling is activated by fatigue microcracks and plays an important role in maintaining bone integrity. It is widely believed that fluid flow-induced shear stress plays a major role in modulating the mechanotransduction process. Therefore, it is likely that fluid flow-induced shear stress plays a major role in the initiation of the repair of fatigue damage. Since no in vivo measurements of fluid flow within bone exist, computational and mathematical models must be employed to investigate the fluid flow field and the shear stress occurring within cortical bone. We developed a computational fluid dynamic model of cortical bone to examine the effect of a fatigue microcrack on the fluid flow field. Our results indicate that there are alterations in the fluid flow field as far as 150mum away from the crack, and that at distances farther than this, the fluid flow field is similar to the fluid flow field of intact bone. Through the crack and immediately above and below it, the fluid velocity is higher, while at the lateral edges it is lower than that calculated for the intact model, with a maximum change of 29%. Our results suggest that the presence of a fatigue microcrack can alter the shear stress in regions near the crack. These alterations in shear stress have the potential to significantly alter mechanotransduction and may play a role in the initiation of the repair of fatigue microcracks.
机译:有针对性的重塑可通过疲劳微裂纹激活,并在保持骨骼完整性方面发挥重要作用。普遍认为,流体流动引起的剪切应力在调节机械传导过程中起主要作用。因此,流体流动引起的剪切应力可能在疲劳损伤的修复开始中起主要作用。由于不存在骨骼内流体流动的体内测量值,因此必须采用计算模型和数学模型来研究皮质骨内存在的流体流场和剪切应力。我们开发了皮质骨的计算流体动力学模型,以研究疲劳微裂纹对流体流场的影响。我们的结果表明,距裂缝至少150mum处的流体流场发生了变化,并且在比该距离更远的距离处,流体流场与完整骨骼的流体流场相似。穿过裂缝并在裂缝的上方和下方,流体速度较高,而在横向边缘,流体速度低于为完整模型计算的速度,最大变化为29%。我们的结果表明,疲劳微裂纹的存在可以改变裂纹附近区域的切应力。剪切应力的这些改变可能会显着改变机械传导,并可能在疲劳微裂纹修复的启动中发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号