首页> 外文期刊>Journal of Biomechanics >A scalable, high resolution strain sensing matrix suitable for tactile transduction
【24h】

A scalable, high resolution strain sensing matrix suitable for tactile transduction

机译:适用于触觉转导的可扩展,高分辨率应变感应矩阵

获取原文
获取原文并翻译 | 示例
           

摘要

The integration of tactile information, such as contact area, displacement magnitude, velocity, and acceleration, is paramount to the optimization of robotics in human-centric environments. Cost effective embeddable sensors with scalable receptive field size and strain sensitivity are not readily commercially available and would benefit investigations of in situ tissue mechanics. We describe the design and performance of a scalable sensor matrix that transduces fine parameters of strain and is made of combinable "modules". The sensors transduce static and dynamic strains of both uniaxial and multi-dimensional nature. Modules consist of three silicon wafers placed on top of and three on the bottom of a hexagonal collar, wafers are thus positioned 120 degrees to one another to facilitate force vector extrapolation. Analog signals from each sensor can be easily compared to neighboring sensor output to determine mechanical phenomena such as slip or shear. The smallest of our prototype multiunit matrices consisted of seven hexes in a honeycomb orientation of 4.1 mm diameter (containing 42 silicon gauges). Unamplified, unshielded output from this embodiment (3 V-exc button cell) yielded 1 mV from 5 mu m displacement. Transduction linearity was high (R>0.99 nearest displacement) and exhibited nominal hysteresis. Modules may be placed upon or embedded into a multitude of materials and the size of individual hexagons may be scaled for favorable stiffness to strain ratio and to scale receptive field. Given the scalability of matrix size and resolution, we believe the sensor matrices could benefit the fields of prosthetics, robotics, and physiologic investigation of tissue mechanics. (C) 2015 Elsevier Ltd. All rights reserved.
机译:诸如接触面积,位移大小,速度和加速度之类的触觉信息的集成对于以人为中心的环境中机器人技术的优化至关重要。具有可扩展的接收场大小和应变敏感性的经济有效的可嵌入传感器尚不容易在市场上买到,这将有利于对原位组织力学的研究。我们描述了可转换传感器矩阵的设计和性能,该矩阵可转换应变的精细参数并由可组合的“模块”制成。传感器转换出单轴和多维性质的静态和动态应变。模块由三个六边形套环顶部的硅片和三个底面的底部硅片组成,因此,硅片彼此之间的位置为120度,以方便进行力矢量外推。来自每个传感器的模拟信号可以轻松地与相邻的传感器输出进行比较,以确定机械现象,例如打滑或剪切。我们最小的原型多单元矩阵由七个六角形,蜂窝状且直径为4.1毫米的矩阵组成(包含42个硅规)。此实施例(3 V-exc纽扣电池)的未放大,未屏蔽输出从5μm位移产生1 mV。换能线性很高(R> 0.99最近位移)并表现出标称滞后。可以将模块放置在或嵌入多种材料中,并且可以按比例缩放各个六边形的大小,以实现良好的刚度,应变比和缩放接收场。考虑到矩阵尺寸和分辨率的可扩展性,我们认为传感器矩阵可以有益于修复,机器人技术和组织力学的生理学研究领域。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号