...
首页> 外文期刊>Journal of biomechanical engineering. >A Novel Bioreactor for Mechanobiological Studies of Engineered Heart Valve Tissue Formation Under Pulmonary Arterial Physiological Flow Conditions
【24h】

A Novel Bioreactor for Mechanobiological Studies of Engineered Heart Valve Tissue Formation Under Pulmonary Arterial Physiological Flow Conditions

机译:新型生物反应器在肺动脉生理流动条件下工程心脏瓣膜组织形成的力学生物学研究

获取原文
获取原文并翻译 | 示例

摘要

The ability to replicate physiological hemodynamic conditions during in vitro tissue development has been recognized as an important aspect in the development and in vitro assessment of engineered heart valve tissues. Moreover, we have demonstrated that studies aiming to understand mechanical conditioning require separation of the major heart valve deformation loading modes: flow, stretch, and flexure (FSF) (Sacks et al., 2009, "Bioengineering Challenges for Heart Valve Tissue Engineering," Annu. Rev. Biomed. Eng., 11(1), pp. 289-313). To achieve these goals in a novel bioreactor design, we utilized a cylindrical conduit configuration for the conditioning chamber to allow for higher fluid velocities, translating to higher shear stresses on the in situ tissue specimens while retaining laminar flow conditions. Moving boundary computational fluid dynamic (CFD) simulations were performed to predict the flow field under combined cyclic flexure and steady flow (cyclic-flex-flow) states using various combinations of flow rate, and media viscosity. The device was successfully constructed and tested for incubator housing, gas exchange, and sterility. In addition, we performed a pilot experiment using biodegradable polymer scaffolds seeded with bone marrow derived stem cells (BMSCs) at a seeding density of 5 x 10(6) cells/cm(2). The constructs were subjected to combined cyclic flexure (1 Hz frequency) and steady flow (Re = 1376; flow rate of 1.06 l/min (LPM); shear stress in the range of 0-9 dynes/cm(2)) for 2 weeks to permit physiological shear stress conditions. Assays revealed significantly (P < 0.05) higher amounts of collagen (20516256 mu g/g) at the end of 2 weeks in comparison to similar experiments previously conducted in our laboratory but performed at subphysiological levels of shear stress (<2 dynes/cm(2); Engelmayr et al., 2006, "Cyclic Flexure and Laminar Flow Synergistically Accelerate Mesenchymal Stem Cell-Mediated Engineered Tissue Formation: Implications for Engineered Heart Valve Tissues," Biomaterials, 27(36), pp. 6083-6095). The implications of this novel design are that fully coupled or decoupled physiological flow, flexure, and stretch modes of engineered tissue conditioning investigations can be readily accomplished with the inclusion of this device in experimental protocols on engineered heart valve tissue formation.
机译:在体外组织发育过程中复制生理血液动力学条件的能力已被认为是工程化心脏瓣膜组织的发育和体外评估中的重要方面。此外,我们已经证明,旨在了解机械调节的研究需要分离主要的心脏瓣膜变形加载模式:流动,拉伸和弯曲(FSF)(Sacks等,2009,“心脏瓣膜组织工程的生物工程挑战”,生物医学工程年刊,11(1),第289-313页)。为了在新型生物反应器设计中实现这些目标,我们在调节室中使用了圆柱形导管配置,以允许更高的流体速度,从而在保留层流条件的同时转化为原位组织标本上的更高剪切应力。进行了移动边界计算流体动力学(CFD)模拟,以使用各种流速和介质粘度的组合来预测循环挠曲和稳态流(循环挠曲流)组合状态下的流场。该设备已成功构建并通过了孵化器外壳,气体交换和无菌测试。此外,我们使用可生物降解的聚合物支架进行了中试实验,该支架上植入了骨髓衍生干细胞(BMSC),播种密度为5 x 10(6)cells / cm(2)。使构造物经受组合的循环挠曲(频率为1 Hz)和稳定流(Re = 1376;流速为1.06 l / min(LPM);剪切应力为0-9达因/ cm(2)),持续2周以允许生理切应力条件。与以前在我们实验室中进行但在亚生理水平的剪切应力下(<2 dynes / cm()进行的类似实验相比,分析显示在2周末胶原蛋白(20516256μg / g)的含量明显更高(P <0.05)。 2); Engelmayr等人,2006,“循环挠曲和层流协同加速间充质干细胞介导的工程组织形成:对工程心脏瓣膜组织的影响”,《生物材料》,27(36),第6083-6095页。这种新颖设计的含义是,通过在工程化心脏瓣膜组织形成的实验规程中包含此设备,可以轻松实现工程组织条件研究的完全耦合或解耦的生理流动,弯曲和拉伸模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号