首页> 外文期刊>Journal of biomechanical engineering. >Hyperelastic Anisotropic Microplane Constitutive Model for Annulus Fibrosus
【24h】

Hyperelastic Anisotropic Microplane Constitutive Model for Annulus Fibrosus

机译:纤维环的超弹性各向异性微平面本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

In a recent paper, Peng et al. (2006, "An Anisotropic Hyperelastic Constitutive Model With Fiber-Matrix Interaction for the Human Annulus Fibrosis, " ASME J. Appl. Mech., 73(5), pp. 815-824) developed an anisotropic hyperelastic constitutive model for the human annulus fibrosus in which fiber-matrix interaction plays a crucial role in simulating experimental observations reported in the literature. Later, Guo et al. (2006, "A Composites-Based Hyperelastic Constitutive Model for Soft Tissue With Application to the Human Fibrosis," J. Mech. Phys. Solids, 54(9), pp. 1952-1971) used fiber reinforced continuum mechanics theory to formulate a model in which the fiber-matrix interaction was simulated using only composite effect. It was shown in these studies that the classical anisotropic hyperelastic constitutive models for soft tissue, which do not account for this shear interaction, cannot accurately simulate the test data on human annulus fibrosus. In this study, we show that the microplane model for soft tissue developed by Caner and Carol (2006, "Microplane Constitutive Model and Computational Framework for Blood Vessel Tissue, " ASME J. Biomech. Eng., 128(3), pp. 419-427) can be adjusted for human annulus fibrosus and the resulting model can accurately simulate the experimental observations without explicit fiber-matrix interaction because, in microplane model, the shear interaction between the individual fibers distributed in the tissue provides the required additional rigidity to explain these experimental facts. The intensity of the shear interaction between the fibers can be adjusted by adjusting the spread in the distribution while keeping the total amount of the fiber constant. A comparison of results obtained from (i) a fiber-matrix parallel coupling model, which does not account for the fibermatrix interaction, (ii) the same model but enriched with fiber-matrix interaction, and (iii) microplane model for soft tissue adapted to annulus fibrosus with two families of fiber distributions is presented. The conclusions are (i) that varying degrees of fiber-fiber and fiber-matrix shear interaction must be taking place in the human annulus fibrosus, (ii) that this shear interaction is essential to be able to explain the mechanical behavior of human annulus fibrosus, and (iii) that microplane model can be fortified with fibermatrix interaction in a straightforward manner provided that there are new experimental data on distribution of fibers, which indicate a spread so small that it requires an explicit fiber-matrix interaction to be able to simulate the experimental data.
机译:在最近的论文中,Peng等。 (ASME J. Appl。Mech。,73(5),pp。815-824)(2006,“具有纤维-基体相互作用的各向异性超弹性本构模型,ASME J. Appl。Mech。,73(5),pp。815-824))开发了人类环状的各向异性超弹性本构模型。纤维与基质相互作用的纤维在模拟文献报道的实验观察中起着至关重要的作用。后来,郭等人。 (2006年,“基于复合材料的软组织的超弹性本构模型在人类纤维化中的应用”,J。Mech。Phys。Solids,54(9),第1952-1971页)使用纤维增强的连续体力学理论来阐述仅使用复合效应模拟纤维-基质相互作用的模型。这些研究表明,软组织的经典各向异性超弹性本构模型不能解释这种剪切相互作用,因此无法准确地模拟人环纤维的测试数据。在这项研究中,我们显示了Caner和Carol(2006,“血管组织的微平面本构模型和计算框架”,ASME J. Biomech。Eng。,128(3),pp。419)开发的软组织微平面模型。 -427)可以针对人的纤维环进行调整,并且生成的模型可以准确地模拟实验观察结果,而无需明确的纤维-基质相互作用,因为在微平面模型中,分布在组织中的各个纤维之间的剪切相互作用提供了所需的额外刚度来解释这些实验事实。纤维之间的剪切相互作用的强度可以通过在保持纤维总量恒定的同时调节分布的扩展来调节。从(i)不考虑纤维基质相互作用的纤维基质平行耦合模型,(ii)相同模型但富含纤维基质相互作用的模型和(iii)适用于软组织的微平面模型获得的结果的比较介绍了纤维环有两个家族的纤维分布。结论是:(i)在人的纤维环中必须发生不同程度的纤维-纤维和纤维-基体的剪切相互作用,(ii)这种剪切相互作用对于能够解释人的纤维环的机械行为至关重要。 (iii)只要存在有关纤维分布的新实验数据,就可以通过简单的方式通过纤维-基质相互作用来增强微平面模型,这表明扩展是如此之小,以至于需要显式的纤维-基质相互作用才能进行模拟实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号