...
首页> 外文期刊>Journal of biomechanical engineering. >Microstructurally Motivated Constitutive Modeling of Mouse Arteries Cultured Under Altered Axial Stretch
【24h】

Microstructurally Motivated Constitutive Modeling of Mouse Arteries Cultured Under Altered Axial Stretch

机译:在轴向拉伸改变下培养的小鼠动脉的微结构化本构模型

获取原文
获取原文并翻译 | 示例
           

摘要

Good predictions of the local mechanical environment of the tissue with known geometry and applied loads are fundamental to quantifying the biological response of tissues to mechanical stimuli. Whereas mean stresses in cylindrical sections of blood vessels may be calculated directly from measured loads and vessel geometry (e.g., Laplace's law), predicting how these stresses are distributed across the wall requires knowledge of the constitutive behavior of the tissue. Previously, we reported biaxial biomechanical data for mouse carotid arteries before and after exposure to altered axial extension in organ culture. Here we considered phenomenological and microstructurally motivated constitutive models and identified material parameters for each via nonlinear regression. Specifically, we considered the model of Chuong and Fung, a four fiber-family model, and several new variants of a rule-of-mixtures model; in the latter, we modeled the artery as a mixture of collagen, elastin, muscle, and water. We found that the four fiber-family model fitted data significantly better than the model of Chuong and Fung. When identifying parameters for the rule-of-mixtures models, we imposed penalties that required each constituent to be structurally significant; e.g., elastin contributing significantly to the overall response over low loads and collagen dominating the response over high loads. Such constraints ascribe additional micro structural "meaning" to the constitutive model. Although imposing such penalties necessarily reduces the goodness of fit of model predictions to experimental data compared to regression without such penalties, the modest reduction in the goodness of fit observed in our results was off-set by the improved structural interpretation such models provide. Such microstructurally motivated models will be useful in characterizing vascular growth and remodeling in terms of the evolution of micro structural metrics that may be quantified experimentally.
机译:对具有已知几何形状和施加载荷的组织局部机械环境进行良好的预测,对于量化组织对机械刺激的生物反应至关重要。尽管可以直接从测量的载荷和血管几何形状(例如,拉普拉斯定律)中计算出血管的圆柱形部分中的平均应力,但是预测这些应力如何在整个壁上分布需要了解组织的本构行为。以前,我们报道了小鼠颈动脉的双轴生物力学数据暴露于器官培养物中改变的轴向延伸前后。在这里,我们考虑了现象学和微观结构的本构模型,并通过非线性回归为每种模型确定了材料参数。具体来说,我们考虑了Chuong和Fung的模型,四纤维家族模型以及混合规则模型的几个新变体。在后者中,我们将动脉建模为胶原蛋白,弹性蛋白,肌肉和水的混合物。我们发现,四个光纤家庭模型拟合数据明显优于Chuong和Fung模型。在确定混合规则模型的参数时,我们施加了惩罚,要求每个组成部分在结构上都重要;例如,弹性蛋白在低负荷时显着促进总体反应,而胶原蛋白在高负荷时占主导地位。这样的约束将附加的微观结构“含义”赋予本构模型。尽管与没有此类惩罚的回归相比,施加此类惩罚必然会降低模型预测与实验数据的拟合优度,但我们的结果中所观察到的拟合优度的适度降低被此类模型提供的改进的结构解释所抵消。这种微观结构驱动的模型将有助于表征可通过实验量化的微观结构指标的演变,从而表征血管的生长和重塑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号