首页> 外文期刊>Journal of biomechanical engineering. >The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading
【24h】

The Dynamic Mechanical Environment of the Chondrocyte: A Biphasic Finite Element Model of Cell-Matrix Interactions Under Cyclic Compressive Loading

机译:软骨细胞的动态力学环境:循环压缩载荷下细胞-基质相互作用的双相有限元模型。

获取原文
获取原文并翻译 | 示例
       

摘要

Cyclic mechanical loading of articular cartilage results in a complex biomechanical environment at the scale of the chondrocytes that strongly affects cellular metabolic activity. Under dynamic loading conditions, the quantitative relationships between macroscopic loading characteristics and solid and fluid mechanical variables in the local cellular environment are not well understood. In this study, an axisymmetric multiscale model of linear biphasic cell-matrix interactions in articular cartilage was developed to investigate the cellular microenvironment in an explant subjected to cyclic confined compressive loading. The model was based on the displacement-velocity-pressure (u-v-p) mixed-penalty weighted residual formulation of linear biphasic theory that was implemented in the COMSOL MULTIPHYSICS software package. The microscale cartilage environment was represented as a three-zone biphasic region consisting of a spherical chondrocyte with encapsulating pericellular matrix (PCM) that was embedded in a cylindrical extracellular matrix (ECM) subjected to cyclic confined compressive loading boundary conditions. Biphasic material properties for the chondrocyte and the PCM were chosen based on previous in vitro micropipette aspiration studies of cells or chondrons isolated from normal or osteoarthritic cartilage. Simulations performed at four loading frequencies in the range 0.01-1.0 Hz supported the hypothesized dual role of the PCM as both a protective layer for the cell and a mechanical transducer of strain. Time varying biphasic variables at the cellular scale were strongly dependent on relative magnitudes of the loading period, and the characteristic gel diffusion times for the ECM, the PCM, and the chondrocyte. The multiscale simulations also indicated that axial strain was significantly amplified in the range 0.01-1.0 Hz, with a decrease in amplification factor and frequency insensitivity at the higher frequencies. Simulations of matrix degradation due to osteoarthritis indicated that strain amplification factors were more significantly altered when loss of matrix stiffness was exclusive to the PCM. The findings of this study demonstrate the complex dependence of dynamic mechanics in the local cellular environment of cartilage on macroscopic loading features and material properties of the ECM and the chondron.
机译:关节软骨的循环机械负荷导致软骨细胞规模的生物力学环境复杂化,从而严重影响细胞的代谢活性。在动态加载条件下,在局部细胞环境中宏观加载特性与固体和流体机械变量之间的定量关系尚不清楚。在这项研究中,开发了一种在关节软骨中线性双相细胞-基质相互作用的轴对称多尺度模型,以研究外植体在循环受限压缩载荷下的细胞微环境。该模型基于线性双相理论的位移-速度-压力(u-v-p)混合惩罚加权残差公式,该公式在COMSOL MULTIPHYSICS软件包中实现。微观软骨环境被表示为一个三区双相区域,由球形软骨细胞与包囊周基质(PCM)组成,包埋在经受周期性限制压缩载荷边界条件的圆柱形细胞外基质(ECM)中。根据先前对从正常或骨关节炎软骨分离的细胞或软骨的体外微量移液吸取研究,选择了软骨细胞和PCM的双相材料特性。在0.01-1.0 Hz范围内的四个负载频率下进行的仿真支持了PCM作为电池保护层和机械应变传感器的假定双重作用。细胞尺度的时变双相变量在很大程度上取决于加载时间的相对大小,以及ECM,PCM和软骨细胞的特征性凝胶扩散时间。多尺度模拟还表明,轴向应变在0.01-1.0 Hz范围内显着放大,而在较高频率下,放大系数和频率不敏感度降低。由骨关节炎引起的基质降解的模拟表明,当基质刚度的损失仅由PCM引起时,应变放大因子的改变更为显着。这项研究的结果表明,软骨局部细胞环境中动态力学对宏观负载特征和ECM和软骨体材料特性的复杂依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号