...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction
【24h】

Mechanistic studies of 1-aminocyclopropane-1-carboxylic acid oxidase: single turnover reaction

机译:1-氨基环丙烷-1-羧酸氧化酶的机理研究:单周转反应

获取原文
获取原文并翻译 | 示例

摘要

The final step in the biosynthesis of the plant hormone ethylene is catalyzed by the non-heme iron-containing enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO). ACC is oxidized at the expense of O_2 to yield ethylene, HCN, CO_2, and two waters. Continuous turnover of ACCO requires the presence of ascorbate and HCO_3~– (or an alternative form), but the roles played by these reagents, the order of substrate addition, and the mechanism of oxygen activation are controversial. Here these issues are addressed by development of the first functional single turnover system for ACCO. It is shown that 0.35 mol ethylene/mol Fe(II)ACCO is produced when the enzyme is combined with ACC and O_2 in the presence of HCO3 – but in the absence of ascorbate. Thus, ascorbate is not required for O2 activation or product formation. Little product is observed in the absence of HCO_3~–, demonstrating the essential role of this reagent. By monitoring the EPR spectrum of the sample during single turnover, it is shown that the active site Fe(II) oxidizes to Fe(III) during the single turnover. This suggests that the electrons needed for catalysis can be derived from a fraction of the initial Fe(II)ACCO instead of ascorbate. Addition of ascorbate at 10% of its K m value significantly accelerates both iron oxidation and ethylene formation, suggesting a novel high-affinity effector role for this reagent. This role can be partially mimicked by a non-redox-active ascorbate analog. A mechanism is proposed that begins with ACC and O_2 binding, iron oxidation, and one-electron reduction to form a peroxy intermediate. Breakdown of this intermediate, perhaps by HCO_3 –-mediated proton transfer, is proposed to yield a high-valent iron species, which is the true oxidizing reagent for the bound ACC.
机译:植物激素乙烯的生物合成的最后一步是通过非血红素含铁酶1-氨基环丙烷-1-羧酸(ACC)氧化酶(ACCO)催化的。以O_2为代价将ACC氧化生成乙烯,HCN,CO_2和两个水。 ACCO的连续转换需要存在抗坏血酸和HCO_3-(或其他形式),但这些试剂的作用,底物添加的顺序以及氧活化的机制仍存在争议。在这里,通过为ACCO开发第一个功能单一的营业额系统解决了这些问题。结果表明,当在HCO3存在下-但在不存在抗坏血酸盐的情况下,将酶与ACC和O_2结合时,会产生0.35 mol乙烯/ mol Fe(II)ACCO。因此,O 2活化或产物形成不需要抗坏血酸。在没有HCO_3〜–的情况下,观察到的产物很少,证明了该试剂的基本作用。通过监测单次翻转过程中样品的EPR光谱,可以看出在单次翻转过程中,活性部位Fe(II)氧化为Fe(III)。这表明催化所需的电子可以源自初始Fe(II)ACCO的一部分而不是抗坏血酸盐。在其K m值的10%处添加抗坏血酸盐可显着加速铁的氧化和乙烯的形成,表明该试剂具有新型的高亲和力效应子作用。非氧化还原活性的抗坏血酸盐类似物可以部分模仿该作用。提出了从ACC和O_2结合,铁氧化和单电子还原形成过氧中间体开始的机理。有人提出可能通过HCO_3介导的质子转移分解这种中间体,以产生高价铁物种,这是结合ACC的真正氧化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号