...
首页> 外文期刊>Journal of Bioenergetics and Biomembranes >The local control of cytosolic Ca2+ as a propagator of CNS communication - Integration of mitochondrial transport mechanisms and cellular responses [Review]
【24h】

The local control of cytosolic Ca2+ as a propagator of CNS communication - Integration of mitochondrial transport mechanisms and cellular responses [Review]

机译:作为中枢神经系统通讯传播剂的胞质Ca2 +的局部控制-线粒体转运机制和细胞应答的整合[综述]

获取原文
获取原文并翻译 | 示例

摘要

Ca2+ signals propagate in wave form along individual cells of the central nervous system (CNS) and through networks of connected cells of neuronal and multiple glial cell types. In order for wave fronts to convey information, signaling mechanisms are required that allow waves to propagate reproducibly and without decrement in signal strength over long distances. CNS Ca2+ waves are under specific integrated local control, made possible by interactions at local subcellular microdomains between endoplasmic reticulum and mitochondria. Active mitochondria located near the mouth of inositol trisphosphate receptor (InsP(3)R) channel clusters in glia take up Ca2+, which may prevent a buildup of Ca2+ around the InsP3R channel, thereby decreasing the rate of Ca2+-induced receptor inactivation, and prolonging channel open time. Mitochondria may amplify InsP(3)-dependent Ca2+ signals by a transient permeability transition in response to Ca2+ uptake into the mitochondrion. Other evidence suggests privileged access into mitochondria for Ca2+ entering neurons by glutamatergic receptor channels. This enables specific signal modulation as the Ca2+ wave is propagated into neurons, such that mitochondria located close to glutamate channels can prolong the neuronal cytosolic response time by successive uptake and release of Ca2+. Disruption of mitochondrial function deregulates the ability of CNS-derived cells to undergo normal Ca2+ signaling and wave propagation. [References: 75]
机译:Ca2 +信号沿中枢神经系统(CNS)的单个细胞以及神经元和多种神经胶质细胞类型的连接细胞网络传播。为了使波前传达信息,需要使用信令机制来允许波可复制地传播并且不会在长距离上降低信号强度。 CNS Ca2 +波处于特定的集成局部控制之下,这是由于内质网和线粒体之间的局部亚细胞微域相互作用而实现的。位于胶质细胞中肌醇三磷酸受体(InsP(3)R)通道簇口附近的活性线粒体吸收Ca2 +,这可能会阻止Ca2 +在InsP3R通道周围堆积,从而降低Ca2 +诱导的受体失活的速率,并延长频道开放时间。线粒体可能通过响应Ca2 +吸收到线粒体中的瞬时渗透性转变来放大InsP(3)依赖性Ca2 +信号。其他证据表明,谷氨酸能受体通道可以使Ca2 +进入神经元进入线粒体。当Ca2 +波传播到神经元中时,这使得能够进行特定的信号调制,使得靠近谷氨酸通道的线粒体可以通过连续摄取和释放Ca2 +来延长神经元胞质反应时间。线粒体功能的破坏调节了CNS衍生细胞经历正常Ca2 +信号传导和波传播的能力。 [参考:75]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号