...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Co ~+-H interaction inspired alternate coordination geometries of biologically important cob(I)alamin: Possible structural and mechanistic consequences for methyltransferases (Conference Paper)
【24h】

Co ~+-H interaction inspired alternate coordination geometries of biologically important cob(I)alamin: Possible structural and mechanistic consequences for methyltransferases (Conference Paper)

机译:Co〜+ -H相互作用激发了生物学上重要的Cob(I)alamin的交替配位几何:甲基转移酶的可能结构和机理后果(会议论文)

获取原文
获取原文并翻译 | 示例

摘要

A detailed computational analysis employing density functional theory (DFT), atoms in molecules, and quantum mechanics/molecular mechanics (QM/MM) tools has been performed to investigate the primary coordination environment of cob(I)alamin (Co ~+Cbx), which is a ubiquitous B _(12) intermediate in methyltransferases and ATP: corrinoid adenosyltransferases. The DFT calculations suggest that the simplified (Co ~+Cbl) as well as the complete (Co ~+Cbi) complexes can adapt to the square pyramidal or octahedral coordination geometry owing to the unconventional H-bonding between the Co? ion and its axial ligands. These Co ~+-H bonds contain appreciable amounts of electrostatic, charge transfer, long-range correlation, and dispersion components. The computed reduction potentials of the Co ~(2+)/Co ~+ couple imply that the Co ~+-H(H _2O) interaction causes a greater anodic shift [5-98 mV vs. the normal hydrogen electrode (NHE) in chloroform solvent] than the analogous Co ~+-H(imidazole) interaction (1 mV vs. NHE) in the reduction potential of the Co ~(2+)/Co _+ couple. This may explain why a β-axial H _2O ligand has specifically been found in the active sites of certain methyltransferases. The QM/MM analysis of methionine synthase bound Co ~+Cbx (Protein Data Bank ID 1BMT, resolution 3.0 ?) indicates that the enzyme-bound Co ~+Cbx can also form a Co ~+-H bond, but can only exist in square pyramidal form because of the steric constraints imposed by the cellular environment. The present calculations thus support a recently proposed alternate mechanism for the enzyme-bound Co ~(2+)/Co ~+ reduction that involves the conversion of square pyramidal Co ~(2+)Cbx into square pyramidal Co ~+Cbx.
机译:利用密度泛函理论(DFT),分子中的原子和量子力学/分子力学(QM / MM)工具进行了详细的计算分析,以研究Cob(I)alamin(Co〜+ Cbx)的主要配位环境,它是甲基转移酶和ATP:类rinoid腺苷基转移酶中普遍存在的B _(12)中间体。 DFT计算表明,由于Co 2+之间的非常规H键,简化的(Co〜+ Cbl)以及完整的(Co〜+ Cbi)配合物可适应方形金字塔或八面体配位几何。离子及其轴向配体。这些Co〜+ -H键包含相当数量的静电,电荷转移,远距离相关和分散成分。计算出的Co〜(2 +)/ Co〜+偶对的还原电位表明,Co〜+ -H(H _2O)相互作用引起更大的阳极位移[5-98 mV,而普通氢电极(NHE)氯仿溶剂]比Co〜(2 +)/ Co _ +对的还原电势具有相似的Co〜+ -H(咪唑)相互作用(1 mV对NHE)。这可以解释为什么在某些甲基转移酶的活性位点中特别发现了β轴H _2O配体。蛋氨酸合酶结合的Co〜+ Cbx的QM / MM分析(蛋白质数据库ID 1BMT,分辨率3.0?)表明,酶结合的Co〜+ Cbx也可以形成Co〜+ -H键,但只能存在于由于细胞环境施加了空间限制,因此呈方形金字塔形。因此,本发明的计算支持了最近提出的用于酶结合的Co〜(2 +)/ Co〜+还原的替代机制,该机制涉及将方形锥体Co〜(2+)Cbx转化为方形锥体Co〜+ Cbx。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号