...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis
【24h】

Oxygen cleavage with manganese and iron in ribonucleotide reductase from Chlamydia trachomatis

机译:沙眼衣原体核糖核苷酸还原酶中锰和铁的氧裂解

获取原文
获取原文并翻译 | 示例

摘要

The oxygen cleavage in Chlamydia trachomatis ribonucleotide reductase (RNR) has been studied using B3LYP*hybrid density functional theory. Class Ic C. trachomatis RNR lacks the radical-bearing tyrosine, crucial for activity in conventional class I (subclass a and b) RNR. Instead of the Fe(III)Fe(III)- Tyr(rad) active state, C. trachomatis RNR has a mixed Mn(IV)Fe(III) metal center in subunit II (R2). A mixed MnFe metal center has never been observed as a radical cofactor before. The active state is generated by reductive oxygen cleavage at the metal site. On the basis of calculated barriers for oxygen cleavage in C. trachomatis R2 and R2 from Escherichia coli with a diiron, a mixed manganese-iron, and a dimanganese center, conclusions can be drawn about the effect of changing metals in R2. The oxygen cleavage is found to be governed by two factors: the redox potentials of the metals and the relative stability of the different peroxides. Mn(IV) has higher stability than Fe(IV), and the barrier is therefore lower with a mixed metal center than with a diiron center. With a dimanganese center, an asymmetric peroxide is more stable than the symmetric peroxide, and the barrier therefore becomes too high. Calculated proton-coupled redox potentials are compared to identify three possible R2 active states, the Fe(III)Fe(III)-Tyr(rad) state, the Mn(IV)Fe(III) state, and the Mn(IV)Mn(IV) state. A tentative energy profile of the thermodynamics of the radical transfer from R2 to subunit I is constructed to illustrate how the stability of the active states can be understood from a thermodynamical point of view.
机译:沙眼衣原体核糖核苷酸还原酶(RNR)中的氧裂解已使用B3LYP *混合密度泛函理论进行了研究。 Ic类沙眼衣原体RNR缺乏带自由基的酪氨酸,这对常规I类(亚类和b类)RNR的活性至关重要。沙眼衣原体RNR代替Fe(III)Fe(III)-Tyr(rad)活性态,在亚单元II(R2)中具有混合的Mn(IV)Fe(III)金属中心。以前从未观察到混合的MnFe金属中心是自由基辅助因子。活性态是通过金属部位的还原性氧裂解而产生的。根据带有二铁,锰铁和二锰中心的沙眼衣原体沙眼衣原体R2和R2中氧裂解的计算障碍,可以得出关于改变R2中金属的影响的结论。发现氧裂解受两个因素控制:金属的氧化还原电势和不同过氧化物的相对稳定性。 Mn(IV)具有比Fe(IV)更高的稳定性,因此在混合金属中心比在二铁中心具有更低的势垒。对于二锰中心,不对称过氧化物比对称过氧化物更稳定,因此势垒变得太高。比较计算出的质子耦合氧化还原电势,以识别三种可能的R2活性态:Fe(III)Fe(III)-Tyr(rad)状态,Mn(IV)Fe(III)状态和Mn(IV)Mn (四)状态。从R2转移到亚基I的自由基的热力学的暂定能谱被构造为说明如何从热力学的角度理解活性态的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号