首页> 外文期刊>Journal of atmospheric and solar-terrestrial physics >Using GPS-GLONASS-GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers
【24h】

Using GPS-GLONASS-GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers

机译:使用GPS-GLONASS-GALILEO数据和IRI建模对射电望远镜和射电干涉仪进行电离层校准

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

VHF and HF radio signals are widely used to observe the Sun and pulsars. Nowadays, large low-frequency radio astronomical arrays (LOFAR, 30-240MHz; MIRA, 80-300MHz) are being constructed to record radiation of pulsars at the maximum distance. registration of the solar radio emission intensity at fixed frequencies and in the spectral VHF band is very important along with other methods of monitoring of coronal mass ejections. Interpreting radio astronomical data is known to be necessary to take into account possible distortions of these signals in the Earth ionosphere. However, in contrast to modern navigation systems (Global Position System (GPS), GLObal NAvigation Satellite System (GLONASS), GALILEO), in which a very accurate reconstruction of ionosphere parameters is a built-in function, in present-day radio astronomy a retrieve of ionosphere transfer characteristics has not been appropriately worked out. This collides with increasing requirements to accuracy of the analysis of a radio emission amplitude profile and to the angular and polarizing resolution of radio telescopes of new generation (LOFAR, SKA, etc.). We have developed a method and software to calculate the ionosphere rotation measure (RM) and dispersion measure (DM). We used the ionosphere model IRI-2001, magnetic field model IGRF-10, and the ionosphere total electron content values obtained from GPS measurements. The obtained values of DM and RM were recalculated into characteristics of the phase delay, Faraday amplitude modulation, and polarization changes. We calculated ones for different levels of geomagnetic activity as well as different angular positions of radio sources. Our main idea is to use a signal of navigation satellites (CPS, GLONASS, GALILEO) as a testing signal from a "reference" source located at minimal angle distance from a source studied. Our project allows development of methods and systems of ADAPTIVE RADIO ASTRONOMY, adaptive to the non-uniform and non-stationary ionosphere, by analogy with known systems of adaptive optics intended to adapt optical telescopes to varying conditions of the optically non-uniform and non-stationary troposphere. (C) 2008 Elsevier Ltd. All rights reserved.
机译:VHF和HF无线电信号被广泛用于观测太阳和脉冲星。如今,正在建造大型低频射电天文阵列(LOFAR,30-240MHz; MIRA,80-300MHz),以记录最大距离处脉冲星的辐射。固定频率和VHF频谱中的太阳无线电发射强度的配准以及其他监测冠状物质抛射的方法非常重要。已知有必要解释射电天文数据,以考虑到地球电离层中这些信号的可能失真。但是,与现代导航系统(全球定位系统(GPS),全球卫星导航系统(GLONASS),伽利略)不同,在现代射电天文学中,电离层参数的精确重建是其内置功能。电离层转移特性的检索尚未得到适当解决。这与对无线电发射振幅分布图的分析精度以及新一代射电望远镜(LOFAR,SKA等)的角度和偏振分辨率的要求不断提高相冲突。我们已经开发了一种方法和软件来计算电离层旋转量度(RM)和弥散量度(DM)。我们使用了电离层模型IRI-2001,磁场模型IGRF-10和通过GPS测量获得的电离层总电子含量值。将获得的DM和RM值重新计算为相位延迟,法拉第幅度调制和极化变化的特征。我们针对地磁活动的不同水平以及无线电源的不同角度位置计算了它们。我们的主要思想是使用导航卫星(CPS,GLONASS,GALILEO)的信号作为来自“参考”源的测试信号,该“参考”源与所研究源的角度距离最小。通过与已知的自适应光学系统进行类比,我们的项目允许开发适应于不均匀和非平稳电离层的自适应无线电天文学的方法和系统,以使光学望远镜适应光学不均匀和不均匀的变化条件。平稳的对流层。 (C)2008 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号