首页> 外文期刊>Journal of Applied Remote Sensing >Kernel linear representation: application to target recognition in synthetic aperture radar images
【24h】

Kernel linear representation: application to target recognition in synthetic aperture radar images

机译:核线性表示:在合成孔径雷达图像中的目标识别中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

A method for target classification in synthetic aperture radar (SAR) images is proposed. The samples are first mapped into a high-dimensional feature space in which samples from the same class are assumed to span a linear subspace. Then, any new sample can be uniquely represented by the training samples within given constraint. The conventional methods suggest searching the sparest representations with l(1)-norm (or l(0)) minimization constraint. However, these methods are computationally expensive due to optimizing nondifferential objective function. To improve the performance while reducing the computational consumption, a simple yet effective classification scheme called kernel linear representation (KLR) is presented. Different from the previous works, KLR limits the feasible set of representations with a much weaker constraint, l(2)-norm minimization. Since, KLR can be solved in closed form there is no need to perform the l(1)-minimization, and hence the calculation burden has been lessened. Meanwhile, the classification accuracy has been improved due to the relaxation of the constraint. Extensive experiments on a real SAR dataset demonstrate that the proposed method outperforms the kernel sparse models as well as the previous works performed on SAR target recognition. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
机译:提出了一种合成孔径雷达图像目标分类的方法。首先将样本映射到一个高维特征空间,在该空间中,假定来自同一类别的样本跨越线性子空间。然后,任何新样本都可以由给定约束内的训练样本唯一表示。常规方法建议使用l(1)-范数(或l(0))最小化约束来搜索最备用表示。但是,由于优化了非微分目标函数,这些方法的计算量很大。为了提高性能同时减少计算量,提出了一种简单而有效的分类方案,称为核线性表示(KLR)。与以前的工作不同,KLR用更弱的约束l(2)-范数最小化限制了可行的表示集。由于可以以封闭形式求解KLR,因此无需执行l(1)最小化,因此减轻了计算负担。同时,由于放宽了约束,提高了分类精度。在真实SAR数据集上进行的大量实验表明,所提出的方法优于内核稀疏模型以及先前在SAR目标识别方面所做的工作。 (C)作者。由SPIE根据Creative Commons Attribution 3.0 Unported License发布。分发或复制此作品的全部或部分,需要对原始出版物(包括其DOI)进行完全归因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号