...
首页> 外文期刊>Journal of Applied Geophysics >Application of the least-squares inversion method: Fourier series versus waveform inversion
【24h】

Application of the least-squares inversion method: Fourier series versus waveform inversion

机译:最小二乘反演方法的应用:傅立叶级数与波形反演

获取原文
获取原文并翻译 | 示例
           

摘要

We describe an implicit link between waveform inversion and Fourier series based on inversion methods such as gradient, Gauss-Newton, and full Newton methods. Fourier series have been widely used as a basic concept in studies on seismic data interpretation, and their coefficients are obtained in the classical Fourier analysis. We show that Fourier coefficients can also be obtained by inversion algorithms, and compare the method to seismic waveform inversion algorithms. In that case, Fourier coefficients correspond to model parameters (velocities, density or elastic constants), whereas cosine and sine functions correspond to components of the Jacobian matrix, that is, partial derivative wavefields in seismic inversion. In the classical Fourier analysis, optimal coefficients are determined by the sensitivity of a given function to sine and cosine functions. In the inversion method for Fourier series, Fourier coefficients are obtained by measuring the sensitivity of residuals between given functions and test functions (defined as the sum of weighted cosine and sine functions) to cosine and sine functions. The orthogonal property of cosine and sine functions makes the full or approximate Hessian matrix become a diagonal matrix in the inversion for Fourier series. In seismic waveform inversion, the Hessian matrix may or may not be a diagonal matrix, because partial derivative wavefields correlate with each other to some extent, making them semi-orthogonal. At the high-frequency limits, however, the Hessian matrix can be approximated by either a diagonal matrix or a diagonally-dominant matrix. Since we usually deal with relatively low frequencies in seismic waveform inversion, it is not diagonally dominant and thus it is prohibitively expensive to compute the full or approximate Hessian matrix. By interpreting Fourier series with the inversion algorithms, we note that the Fourier series can be computed at an iteration step using any inversion algorithms such as the gradient, full-Newton, and Gauss-Newton methods similar to waveform inversion. (C) 2015 Published by Elsevier B.V.
机译:我们基于诸如梯度,高斯-牛顿和完全牛顿法等反演方法描述了波形反演和傅立叶级数之间的隐式链接。傅里叶级数已被广泛用作地震数据解释研究的基本概念,其系数可通过经典的傅里叶分析获得。我们表明,也可以通过反演算法获得傅立叶系数,并将该方法与地震波形反演算法进行比较。在那种情况下,傅里叶系数对应于模型参数(速度,密度或弹性常数),而余弦和正弦函数对应于雅可比矩阵的分量,即地震反演中的偏导数波场。在经典傅里叶分析中,最佳系数由给定函数对正弦和余弦函数的敏感度确定。在傅立叶级数的反演方法中,傅立叶系数是通过测量给定函数和测试函数(定义为加权余弦和正弦函数之和)之间的残差对余弦和正弦函数的敏感度来获得的。余弦和正弦函数的正交特性使完整或近似的Hessian矩阵成为傅立叶级数反演中的对角矩阵。在地震波形反演中,Hessian矩阵可能是对角矩阵,也可能不是对角矩阵,因为部分导数波场在某种程度上相互关联,使它们成为半正交。但是,在高频极限下,Hessian矩阵可以通过对角矩阵或对角占优矩阵来近似。由于我们通常在地震波形反演中处理相对较低的频率,因此它不是对角线主导的,因此计算完整或近似的Hessian矩阵的成本过高。通过使用反演算法解释傅里叶级数,我们注意到可以使用类似于波形反演的任何反演算法(例如梯度,全牛顿和高斯-牛顿法)在迭代步骤中计算傅里叶级数。 (C)2015由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号