首页> 外文期刊>Journal of Applied Geophysics >Pore size distributions and hydraulic conductivities of rocks derived from Magnetic Resonance Sounding relaxation data using multi-exponential decay time inversion
【24h】

Pore size distributions and hydraulic conductivities of rocks derived from Magnetic Resonance Sounding relaxation data using multi-exponential decay time inversion

机译:使用多指数衰减时间反演的磁共振测深弛豫数据得出的岩石孔隙尺寸分布和水导率

获取原文
获取原文并翻译 | 示例
           

摘要

In hydrogeology there is a variety of empirical formulae available for determination of hydraulic conductivity of porous media, all based on the analysis of grain size distributions of aquifer materials. Sensitivity of NMR measurements to pore sizes makes it a good indicator of hydraulic conductivity. Analogous to laboratory NMR, Magnetic Resonance Sounding (MRS) relaxation data are of a multi-exponential (ME) nature due to the distribution of different pore sizes in an investigated rock layer. ME relaxation behaviour will also arise due to the superposition of NMR signals which originate from different layers. It has been shown, that both kinds of ME behaviour coexist in MRS and can principally be separated by ME inversion of the field data. Only a few publications exist that have proposed approaches to qualitatively and quantitatively estimate petrophysical parameters such as the hydraulic conductivity from MRS measurements, i.e. MRS porosity and decay times. The so far used relations for the estimation of hydraulic conductivity in hydrogeology and NMR experiments are compared and discussed with respect to their applicability in MRS. Taking into account results from a variety of laboratory NMR and MRS experiments mean rock specific calibration factors are introduced for a data-base-calibrated estimation of hydraulic conductivity when no on-site calibration of MRS is available. Field data have been analysed using conventional and ME inversion using such mean calibration values. The results for conventional and ME inversion agree with estimates obtained from well core analysis for shallow depths but are significantly improved using a ME inversion approach for greater depths.
机译:在水文地质学中,有许多经验公式可用于确定多孔介质的水力传导率,所有这些公式都是基于对含水层材料粒度分布的分析。 NMR测量对孔径的敏感性使其成为水力传导率的良好指标。类似于实验室NMR,由于研究岩石层中不同孔径的分布,磁共振测深(MRS)弛豫数据具有多指数(ME)性质。由于来自不同层的NMR信号的叠加,也会出现ME弛豫行为。已经表明,两种ME行为共存于MRS中,并且原则上可以通过字段数据的ME反演来区分。仅存在少数出版物提出了定性和定量估计岩石物理参数的方法,例如根据MRS测量得出的水力传导率,即MRS孔隙率和衰减时间。比较并讨论了到目前为止在水文地质学和NMR实验中用于估算水力传导率的关系,并讨论了它们在MRS中的适用性。考虑到各种实验室NMR和MRS实验的结果,在没有现场MRS校准的情况下,可以将岩石特定的校准系数引入数据库,以进行水力传导率的校准估算。已经使用常规的和使用这种平均校准值的ME反演来分析现场数据。常规和ME反演的结果与从井芯分析得到的浅层深度的估计值吻合,但使用ME反演方法获得较大深度则明显改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号