...
首页> 外文期刊>Journal of Applied Geophysics >Modeling and inversion of elastic wave velocities and electrical conductivity in clastic formations with structural and dispersed shales
【24h】

Modeling and inversion of elastic wave velocities and electrical conductivity in clastic formations with structural and dispersed shales

机译:具有结构性和分散性页岩的碎屑岩层中弹性波速度和电导率的建模和反演

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a new approach for simulating P- and S-wave velocities, and electrical conductivity in shalysand rocks and determining the shale spatial distribution (dispersed and/or structural shales). In this approach, we used the effective medium method and hierarchical model for clastic formations. We treat shaly-sand formations as porous natural-composite materials containing: solid grains (such as quartz, feldspars and structural shale) and pores completely filled with a mixture of hydrocarbon, water and dispersed shale. For calculating the effective elastic properties and electrical conductivity of this composite, we have applied the multicomponent self-consistent effective media approximation (EMA) method. We simulate the elastic velocities and electrical conductivity for clastic formations in two steps. Firstly, we calculate the effective properties of mixture (combination of water, hydrocarbon and dispersed shale) filling the pores. Then we find the effective elastic and electrical conductivity properties of formation constituted of solid grains (quartz and structural shale) and pores with the effective properties determined in the previous step. We considered that all components are represented by ellipsoids. The aspect ratios (shapes) of grains and pores; are defined as a porosity function obtained for the model of clean sand formations. Modeling results have demonstrated that the shapes of both shale components (dispersed and structural) wealdy affect the effective elastic velocities and electrical conductivity of shaly-sand formation and can be approximated by flatted ellipsoids. The model proposed has been used to determine the volumes of dispersed and structural shales for two sets of published experimental data obtained from the cores. For determining the shale distribution, we have performed the joint inversion of the following physical properties: P-, S-wave velocities, total porosity, and total shale volume. Additionally, we have predicted the effective electrical conductivity for the second set of data, taking into account the shale distribution obtained by the inversion process. A good agreement between the simulated effective conductivity and measured data confirms the determination of shale spatial distribution, and allows us to validate the proposed model and calculation technique. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文提出了一种模拟P和S波速度以及页岩和砂岩中电导率并确定页岩空间分布(分散和/或结构性页岩)的新方法。在这种方法中,我们对碎屑岩层使用了有效的介质方法和分层模型。我们将泥质砂岩地层视为多孔的天然复合材料,其中包含:固体颗粒(例如石英,长石和结构性页岩)和完全填充有碳氢化合物,水和分散页岩的混合物的孔隙。为了计算该复合材料的有效弹性性能和电导率,我们应用了多组分自洽有效介质近似(EMA)方法。我们分两步模拟了碎屑岩的弹性速度和电导率。首先,我们计算填充孔隙的混合物(水,碳氢化合物和分散的页岩的混合物)的有效性质。然后,我们发现由固体颗粒(石英和结构页岩)和孔隙构成的地层的有效弹性和电导率特性,以及在上一步中确定的有效特性。我们认为所有组件都由椭球表示。细孔的纵横比(形状);定义为为洁净砂岩模型获得的孔隙度函数。建模结果表明,两种页岩成分(分散的和结构的)富集的形状都会影响页岩砂地层的有效弹性速度和电导率,并且可以通过扁平椭球近似。建议的模型已用于确定从岩心获得的两组已发布的实验数据的分散页岩和结构页岩的体积。为了确定页岩分布,我们对以下物理性质进行了联合反演:P波,S波速度,总孔隙度和总页岩体积。此外,考虑到反演过程获得的页岩分布,我们已经预测了第二组数据的有效电导率。模拟有效电导率与实测数据之间的良好一致性证实了页岩空间分布的确定,并使我们能够验证所提出的模型和计算技术。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号