...
首页> 外文期刊>Journal of Applied Polymer Science >COOPERATIVE RELAXATION PROCESSES IN POLYMERS
【24h】

COOPERATIVE RELAXATION PROCESSES IN POLYMERS

机译:聚合物的协同松弛过程

获取原文
获取原文并翻译 | 示例

摘要

The basic mode of relaxation in polymer molecules involves the rotation of a conformer, with a time scale of the order of picoseconds. This fast relaxation process, however, cannot take place easily in the condensed state crowded by densely packed conformers, necessitating the intermolecular cooperativity among them. The domain of cooperativity grows at lower temperatures, towards the infinite size at the Kauzman zero entropy temperature, though the system deviates from the equilibrium as the glass transition intervenes at about 50 degrees C above that temperature. From the temperature dependence of the domain size, the well-known Vogel equation is derived, which we consider is the basic origin of the empirical WLF and free volume equations. The molar volume is a crucial factor in determining molar fi-ee volume. The molecular weight of a conformer with a density correction, therefore, can be used as a parameter in determining the T-g of liquids and amorphous polymers. A larger size conformer means a higher glass transition temperature. A conformer at the chain end, on the other hand, has a higher enthalpy, i.e., a smaller effective size for that conformer. If a conformer is reacted trifunctionally, the resulting conformer is a combination of the two conformers and T-g increases, but a further addition of another conformer to that branch point reduces the average size of the conformers, so T-g decreases. The model for cooperative relaxation can be directly applied to predicting T(g)s from the chemical structure of polymers, the kinetics and T(g)s of thermosets during the crosslinking reaction, the distribution of relaxation times from the domain size distribution at a given temperature, the dynamics of the physical aging process, and other complex behaviors of polymers and liquids near the glass transition temperature. (C) 1997 John Wiley & Sons, Inc. [References: 16]
机译:聚合物分子的基本弛豫模式涉及构象异构体的旋转,时间尺度约为皮秒。然而,这种快速的松弛过程在稠密堆积的构象异构体拥挤的缩合状态下不易发生,因此它们之间需要分子间的协同作用。尽管在玻璃化转变温度高于该温度约50摄氏度时,系统偏离了平衡,但在较低的温度下,协同作用域向着Kauzman零熵温度下的无限大小增长。根据域大小的温度依赖性,得出了著名的Vogel方程,我们认为这是经验WLF和自由体积方程的基本起源。摩尔体积是确定摩尔纤维体积的关键因素。因此,具有密度校正的构象异构体的分子量可用作确定液体和无定形聚合物的T-g的参数。较大尺寸的适形剂意味着较高的玻璃化转变温度。另一方面,链末端的构象异构体具有较高的焓,即该构象异构体的有效尺寸较小。如果构象异构体三官能反应,则得到的构象异构体是两个构象异构体的组合,并且T-g增加,但是在该分支点上进一步添加另一种构象异构体减小了该构象异构体的平均尺寸,因此T-g降低。协同弛豫模型可直接用于从聚合物的化学结构,热固性聚合物的动力学和交联反应过程中的T(g)s,弛豫时间的分布,结构域的尺寸分布等方面预测T(g)s。在一定温度下,物理老化过程的动力学,以及接近玻璃化转变温度的聚合物和液体的其他复杂行为。 (C)1997 John Wiley&Sons,Inc. [参考:16]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号