...
首页> 外文期刊>Journal of Aerosol Science >Computational guidelines and an empirical model for particle deposition in curved pipes using an Eulerian-Lagrangian approach
【24h】

Computational guidelines and an empirical model for particle deposition in curved pipes using an Eulerian-Lagrangian approach

机译:使用欧拉-拉格朗日方法的弧形管道中颗粒沉积的计算准则和经验模型

获取原文
获取原文并翻译 | 示例
           

摘要

Computational guidelines are provided for modeling turbulent particulate-laden flows in curved pipes using a Reynolds-Averaged Navier-Stokes (RANS) approach in ANSYS FLUENT. The standard k-ε model and the linear pressure-strain Reynolds Stress Model (RSM) are used to close the RANS equation. Different near-wall treatments associated with the selected turbulence closures are employed to study their impact on estimating pressure drop and particle deposition (grade efficiency). The bends studied had different bend angles, bend curvature ratios, and the flows had various Re numbers. Experimental results available in the literature are employed to validate the computational results. The observed turbulent flows exhibit complex secondary flow patterns at the bend and these patterns are influenced by the bend curvature ratio and the flow Re number. The pressure drop along the curved pipe is well estimated using either closure for all three near-wall treatments with the exception of pressure at the inner and outer walls of the 180° bend, where an error of about 7% is obtained. With respect to particle deposition however, the performance of the RSM outperforms that of the standard k-e model. Using an Enhanced Wall Treatment (EWT) combined with an RSM can improve the accuracy by as much as 19% in a 90° bend and up to 30% in a 180° bend when compared to other near-wall treatments and closure models. The RSM with EWT should thus be employed when modeling particle deposition in flows with curved streamlines. In addition, a new empirical model is proposed to model particle deposition efficiency in curved pipes. The model extends the range of previous empirical models and accounts for the effects of the Stokes number, the bend angle, and the curvature ratio.
机译:提供了用于在ANSYS FLUENT中使用Reynolds平均Navier-Stokes(RANS)方法对弯管中充满颗粒的湍流建模的计算准则。使用标准k-ε模型和线性压力应变雷诺应力模型(RSM)来关闭RANS方程。与选定的湍流封闭件相关的不同近壁处理方法被用来研究其对估算压降和颗粒沉积(坡度效率)的影响。所研究的弯曲具有不同的弯曲角度,弯曲曲率比,并且流动具有不同的Re数。文献中提供的实验结果用于验证计算结果。观察到的湍流在折弯处表现出复杂的二次流模式,并且这些模式受折弯曲率比和流向Re数的影响。沿弯曲管的压降可以通过使用所有三种近壁处理中的任意一种封闭方式进行很好的估算,除了180°弯曲处的内壁和外壁处的压力外,其误差约为7%。但是,在颗粒沉积方面,RSM的性能优于标准k-e模型。与其他近壁处理和封闭模型相比,结合使用增强型墙面处理(EWT)和RSM可以将90°弯曲处的精度提高19%,将180°弯曲处的精度提高30%。因此,在对具有弯曲流线的流中的颗粒沉积进行建模时,应使用带EWT的RSM。此外,提出了一种新的经验模型来模拟弯管中的颗粒沉积效率。该模型扩展了以前的经验模型的范围,并考虑了斯托克斯数,弯曲角度和曲率比的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号