首页> 外文期刊>Journal of Aerosol Science >Comparison of analytical and CFD models with regard to micron particle deposition in a human 16-generation tracheobronchial airway model
【24h】

Comparison of analytical and CFD models with regard to micron particle deposition in a human 16-generation tracheobronchial airway model

机译:人类16代气管支气管气道模型中微米颗粒沉积的分析模型和CFD模型的比较

获取原文
获取原文并翻译 | 示例
           

摘要

A representative human tracheobronchial tree has been geometrically represented with adjustable triple-bifurcation units (TBUs) in order to effectively simulate local and global micron particle depositions. It is the first comprehensive attempt to compute micron-particle transport in a (Weibel Type A) 16-generation model with realistic inlet conditions. The CFD modeling predictions are compared to experimental observations as well as analytical modeling results. Based on the findings with the validated computer simulation model, the following conclusions can be drawn: (i) Surprisingly, simulated inspiratory deposition fractions for the entire tracheobronchial region (say, G0-G15) with repeated TBUs in parallel and in series agree rather well with those calculated using analytical/semi-empirical expressions. However, the predicted particle-deposition fractions based on such analytical formulas differ greatly from the present simulation results for most local bifurcations, due to the effects of local geometry and resulting local flow features and particle distributions. Clearly, the effects of realistic geometries, flow structures and particle distributions in different individual bifurcations accidentally cancel each other so that the simulated deposition efficiencies during inspiration in a relatively large airway region may agree quite well with those obtained from analytical expressions. Furthermore, with the lack of local resolution, analytical models do not provide any physical insight to the air-particle dynamics in the tracheobronchial region. (ii) The maximum deposition enhancement factors (DEF) may be in the order of 10~2 to 10~3 for micron particles in the tracheobronchial airways, implying potential health effects when the inhaled particles are toxic. (iii)The presence of sedimentation for micron particles in lower bronchial airways may change the local impaction-based deposition patterns seen for larger airways and hence reduces the maximum DEF values. (iv) Rotation of an airway bifurcation cause a significant impact on distal bifurcations rather than on the proximal ones. Such geometric effects are minor when compared to the effects of airflow and particle transport/deposition history, i.e., upstream effects.
机译:具有代表性的人气管支气管树已经用可调节的三分叉单元(TBU)进行了几何表示,以便有效地模拟局部和全局微米级粒子沉积。这是在具有实际入口条件的16代(Weibel A型)模型中计算微米颗粒传输的首次全面尝试。将CFD建模预测与实验观察结果以及分析建模结果进行比较。基于经过验证的计算机模拟模型的发现,可以得出以下结论:(i)令人惊讶的是,在整个气管支气管区域(例如,G0-G15)的模拟吸气沉积分数与平行和串联重复的TBU相当吻合与那些使用解析/半经验表达式计算的结果。然而,由于局部几何形状以及所产生的局部流动特征和颗粒分布的影响,基于这种分析公式的预测颗粒沉积分数与大多数局部分支的当前模拟结果差异很大。显然,不同的单个分叉中的实际几何形状,流动结构和颗粒分布的影响会彼此意外抵消,因此在较大气道区域吸气时模拟的沉积效率可能与从解析表达式获得的结果非常吻合。此外,由于缺乏局部分辨率,分析模型无法为气管支气管区域的空气动力学提供任何物理见解。 (ii)对于气管支气管气道中的微米颗粒,最大沉积增强因子(DEF)可能在10〜2至10〜3的数量级,这意味着当吸入的颗粒有毒时可能对健康产生影响。 (iii)在下部支气管气道中存在微米颗粒的沉积物可能会改变在较大气道中所见的局部基于撞击的沉积模式,从而降低最大DEF值。 (iv)气道分叉的旋转对远端分叉而不是近端分叉产生重大影响。与气流和颗粒传输/沉积历史的影响(即上游影响)相比,这种几何影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号