首页> 外文期刊>JOM >Adaptive Hierarchical-Concurrent Multiscale Modeling of Ductile Failure in Heterogeneous Metallic Materials
【24h】

Adaptive Hierarchical-Concurrent Multiscale Modeling of Ductile Failure in Heterogeneous Metallic Materials

机译:非均质金属材料延性失效的自适应递阶多级并行多尺度建模

获取原文
获取原文并翻译 | 示例
           

摘要

This article addresses two topics on multiscale modeling of heterogeneous metals and alloys. The first topic focuses on developing an adaptive hierarchical-concurrent multilevel modeling framework for ductile fracture. The microstructure of aluminum alloys, for example, is characterized by a dispersion of heterogeneities such as silicon and intermetallics in a ductile aluminum matrix. The multilevel model invokes two-way coupling, viz. hierarchical models for homogenized constitutive modeling and concurrent models with scale transition in regions of localization and damage. Adaptivity is necessary for evolving microstructural deformation and damage. A macroscopic analysis in regions homogeneity incorporates homogenization-based continuum plasticity-damage models. A microscopic analysis using locally enhanced-Voronoi cell finite-element method is required for regions of high macroscopic gradients caused by underlying localized plasticity and damage. Coupled macroscopic and microscopic analysis is conducted concurrently. Physics-based level change criteria are developed to improve accuracy and efficiency. The second topic discusses a nested dual-stage homogenization method for microstructure-based homogenized continuum plasticity models for cast aluminum alloys with large secondary dendrite arm spacing. Two distinct statistically equivalent representative volume elements are identified and used in the asymptotic expansion-based homogenization and self-consistent homogenization processes, respectively. The two-stage homogenization enables an evaluation of the overall homogenized model of a cast alloy from limited experimental data, as well as material properties of constituents like interdendritic phase and pure aluminum matrix.
机译:本文讨论有关异质金属和合金的多尺度建模的两个主题。第一个主题侧重于为韧性断裂开发自适应的分层并行多级建模框架。例如,铝合金的微观结构的特征是在韧性铝基体中分散了诸如硅和金属间化合物之类的异质性。多级模型调用双向耦合,即。均质本构模型的分层模型和在局部化和损伤区域中具有尺度转换的并发模型。适应性对于不断发展的微结构变形和破坏是必不可少的。区域均匀性的宏观分析结合了基于均匀化的连续性可塑性-破坏模型。对于由潜在的局部可塑性和破坏引起的高宏观梯度区域,需要使用局部增强的Voronoi细胞有限元方法进行微观分析。同时进行宏观和微观耦合分析。制定了基于物理的水平变化标准,以提高准确性和效率。第二个主题讨论了嵌套的二级均质化方法,用于基于微观结构的均质连续体塑性模型,该模型具有较大的二次枝晶臂间距。确定了两个不同的统计等效代表体积元素,分别在基于渐近展开的均质化和自洽均质化过程中使用。通过两阶段均质化,可以从有限的实验数据以及诸如树枝状晶间相和纯铝基体之类的成分的材料性能中评估铸造合金的整体均质化模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号