首页> 外文期刊>JOM >Measurement of Spin-Lattice Relaxation Times and Concentrations in Systems with Chemical Exchange Using the One-Pulse Sequence: Breakdown of the Ernst Model for Partial Saturation in Nuclear Magnetic Resonance Spectroscopy
【24h】

Measurement of Spin-Lattice Relaxation Times and Concentrations in Systems with Chemical Exchange Using the One-Pulse Sequence: Breakdown of the Ernst Model for Partial Saturation in Nuclear Magnetic Resonance Spectroscopy

机译:使用一脉冲序列测量具有化学交换的系统中自旋晶格弛豫时间和浓度:核磁共振波谱中部分饱和的Ernst模型的分解

获取原文
获取原文并翻译 | 示例
       

摘要

A fundamental problem in Fourier transform NMR spectroscopy is the calculation of observed resonance amplitudes for a repetitively pulsed sample, as first analyzed by Ernst and Anderson in 1966. Applications include determination of spin-lattice relaxation times (T_(1)'s) by progressive saturation and correction for partial saturation in order to determine the concentrations of the chemical constituents of a spectrum. Accordingly, the Ernst and Anderson formalism has been used in innumerable studies of chemical and, more recently, physiological systems. However, that formalism implicitly assumes that no chemical exchange occurs. Here, we present an analysis of N sites in an arbitrary chemical exchange network, explicitly focusing on the intermediate exchange rate regime in which the spin-lattice relaxation rates and the chemical exchange rates are comparable in magnitude. As a special case of particular importance, detailed results are provided for a system with three sites undergoing mutual exchange. Specific properties of the N-site network are then detailed. We find that (i) the Ernst and Anderson analysis describing the response of a system to repetitive pulsing is inapplicable to systems with chemical exchange and can result in large errors in T_(1) and concentration measurements; (ii) T_(1)'s for systems with arbitrary exchange networks may still be correctly determined from a one-pulse experiment using the Ernst formula, provided that a short interpulse delay time and a large flip angle are used; (iii) chemical concentrations for exchanging systems may be correctly determined from a one-pulse experiment either by using a short interpulse delay time with a large flip angle, as for measuring T_(1)'s, and correcting for partial saturation by use of the Ernst formula, or directly by using a long interpulse delay time to avoid saturation; (iv) there is a significant signal-to-noise penalty for performing one-pulse experiments under conditions which permit accurate measurements of T_(1)'s and chemical concentrations. The present results are analogous to but are much more general than those that we have previously derived for systems with two exchanging sites. These considerations have implications for the design and interpretation of one-pulse experiments for all systems exhibiting chemical exchange in the intermediate exchange regime, including virtually all physiologic samples.
机译:傅里叶变换NMR光谱学中的一个基本问题是对重复脉冲样品观察到的共振幅度的计算,这是恩斯特(Ernst)和安德森(Anderson)于1966年首次分析的。饱和度和部分饱和度的校正,以确定光谱中化学成分的浓度。因此,恩斯特和安德森形式主义已被用于无数化学和近代生理系统的研究。但是,形式主义隐含地假设没有化学交换发生。在这里,我们对任意化学交换网络中的N个位点进行分析,明确地关注中间交换速率体系,其中自旋晶格弛豫速率和化学交换速率的大小可比。作为特别重要的特殊情况,将为三个站点进行相互交换的系统提供详细的结果。然后详细介绍N站点网络的特定属性。我们发现(i)描述系统对重复脉冲响应的Ernst和Anderson分析不适用于进行化学交换的系统,并且可能导致T_(1)和浓度测量结果出现较大误差; (ii)只要使用短的脉冲间延迟时间和大的翻转角,仍然可以通过使用恩斯特公式的单脉冲实验正确确定具有任意交换网络的系统的T_(1); (iii)交换系统的化学浓度可通过单脉冲实验正确确定,方法是使用短的脉冲间延迟时间和较大的翻转角来测量T_(1),然后通过使用恩斯特公式,或者直接通过使用较长的脉冲延迟时间来避免饱和; (iv)在允许精确测量T_(1)和化学浓度的条件下进行单脉冲实验会产生明显的信噪比损失。目前的结果与我们先前针对具有两个交换位点的系统得出的结果相似,但比以前更广泛。这些考虑因素对于在中间交换方案中表现出化学交换作用的所有系统(包括几乎所有生理样品)的单脉冲实验的设计和解释都具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号