首页> 外文期刊>DNA research: an international journal for rapid publication of reports on genes and genomes >Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato
【24h】

Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato

机译:基于经验和计算机模拟的番茄双消化酶切位点相关DNA测序的分析工作流程

获取原文
获取原文并翻译 | 示例
           

摘要

Double-digest restriction site-associated DNA sequencing (ddRAD-Seq) enables high-throughput genome-wide genotyping with next-generation sequencing technology. Consequently, this method has become popular in plant genetics and breeding. Although computational in silico prediction of restriction sites from the genome sequence is recognized as an effective approach for choosing the restriction enzymes to be used, few reports have evaluated the in silico predictions in actual experimental data. In this study, we designed and demonstrated a workflow for in silico and empirical ddRAD-Seq analysis in tomato, as follows: (i) in silico prediction of optimum restriction enzymes from the reference genome, (ii) verification of the prediction by actual ddRAD-Seq data of four restriction enzyme combinations, (iii) establishment of a computational data processing pipeline for high-confidence single nucleotide polymorphism (SNP) calling, and (iv) validation of SNP accuracy by construction of genetic linkage maps. The quality of SNPs based on de novo assembly reference of the ddRAD-Seq reads was comparable with that of SNPs obtained using the published reference genome of tomato. Comparisons of SNP calls in diverse tomato lines revealed that SNP density in the genome influenced the detectability of SNPs by ddRAD-Seq. In silico prediction prior to actual analysis contributed to optimization of the experimental conditions for ddRAD-Seq, e.g. choices of enzymes and plant materials. Following optimization, this ddRAD-Seq pipeline could help accelerate genetics, genomics, and molecular breeding in both model and non-model plants, including crops.
机译:双消化酶切位点相关的DNA测序(ddRAD-Seq)可通过下一代测序技术实现全基因组高通量基因分型。因此,该方法已在植物遗传育种中流行。尽管从基因组序列计算限制性位点的计算机模拟预测是选择限制性酶的有效方法,但很少有报道评估实际实验数据中的计算机预测。在这项研究中,我们设计并演示了一种用于番茄的计算机模拟和经验ddRAD-Seq分析的工作流程,具体如下:(i)从参考基因组中计算机预测最佳限制性酶的计算机模拟;(ii)通过实际ddRAD验证预测-四个限制酶组合的序列数据,(iii)建立用于高可信度单核苷酸多态性(SNP)调用的计算数据处理管道,以及(iv)通过构建遗传连锁图来验证SNP准确性。基于ddRAD-Seq读数的从头组装参考的SNP的质量与使用已发表的番茄参考基因组获得的SNP的质量相当。比较不同番茄株系中SNP的呼唤,发现基因组中的SNP密度影响ddRAD-Seq对SNP的可检测性。实际分析之前的计算机模拟预测有助于优化ddRAD-Seq的实验条件,例如酶和植物材料的选择。经过优化后,该ddRAD-Seq管道可以帮助加快模型植物和非模型植物(包括农作物)的遗传学,基因组学和分子育种。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号