首页> 外文期刊>Drug design and discovery >Molecular dynamics simulations of the three dimensional model of plasmepsin II--peptidic inhibitor complexes.
【24h】

Molecular dynamics simulations of the three dimensional model of plasmepsin II--peptidic inhibitor complexes.

机译:纤溶酶II-肽抑制剂复合物三维模型的分子动力学模拟。

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmodium falciparum is a major causative agent of malaria, a disease of worldwide importance. Inhibition of a hemoglobin degrading P. falciparum aspartic protease Plasmepsin II (Plm II) provides a viable strategy for antimalarial therapy. Linear peptidic inhibitors based on the 4(S)-amino-3(S)-hydroxy-5-phenylpentanoic acid at the P1-P1' positions are known which inhibit Plm II with improved selectivity over cathepsin D. A series of computations were performed in order to gain insight into the interactions of these inhibitors with Plm II. The docking and molecular dynamics simulations were performed on a model ligand/enzyme complex to optimize the variables involved in the generation of ligand/enzyme models. This protocol of docking and molecular dynamics (MD) simulation was then used to derive the ligand-enzyme complexes of the molecules used in the present study. Different modes of binding of pepstatin and the three linear inhibitors were studied. Molecular dynamics simulation was performed at 300K for 100ps with a time step of Ifs. The structural effects of ligand binding were analyzed on the basis of hydrogen bond interactions, interaction energies, hydrophobic contacts and RMS deviations in the resulting energy-minimized structures of the receptor-ligand complexes. The results indicate that hydrophobic and hydrogen bonding interactions are responsible for selective inhibition of Plm II and improved selectivity over cathepsin D. Hydrogen bonding interaction plays an important role for amino acid residues such as Asp-34, Asp-214, Thr-217, Ser-218, Val-78, Ser-79, Tyr-192 and Gly-216. The binding of the inhibitors to the enzyme, while producing no large distortions in the enzyme active site cleft, results in significant RMS deviations of the inhibitor, which represent the distortion of the inhibitor, effected by the proteinase. Thus, the information generated from this analysis should be useful for further work in the area of antimalarial research.
机译:恶性疟原虫是疟疾的主要病原体,疟疾是世界范围内重要的疾病。抑制血红蛋白降解恶性疟原虫天冬氨酸蛋白酶纤溶酶II(Plm II)为抗疟疾治疗提供了可行的策略。已知基于P1-P1'位置的4(S)-氨基-3(S)-羟基-5-苯基戊酸的线性肽抑制剂,其抑制Plm II的选择性比组织蛋白酶D高。进行了一系列计算为了深入了解这些抑制剂与Plm II的相互作用。在模型配体/酶复合物上进行对接和分子动力学模拟,以优化参与配体/酶模型生成的变量。然后,该对接和分子动力学(MD)模拟方案可用于推导本研究中使用的分子的配体-酶复合物。研究了胃酶抑素与三种线性抑制剂的不同结合方式。分子动力学模拟是在300K的条件下以100ps的时间步长进行100ps。基于氢键相互作用,相互作用能,疏水性接触和所得的受体-配体复合物的能量最小化结构的RMS偏差,分析了配体结合的结构效应。结果表明疏水和氢键相互作用是对Plm II的选择性抑制和相对于组织蛋白酶D选择性更高的原因。氢键相互作用对氨基酸残基(如Asp-34,Asp-214,Thr-217,Ser)起着重要作用-218,Val-78,Ser-79,Tyr-192和Gly-216。抑制剂与酶的结合,尽管在酶活性位点裂口中不产生大的扭曲,却导致了由蛋白酶引起的显着的RMS偏差,这代表了抑制剂的扭曲。因此,从这种分析中产生的信息对于在抗疟研究领域的进一步工作应该是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号