...
首页> 外文期刊>Diamond and Related Materials >Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media
【24h】

Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media

机译:磁性粒子包埋碳纳米管用于垂直记录介质的可行性研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nano-sized magnetic particles were successfully used as the catalysts to synthesize magnetic metal-encapsulated carbon nanotubes (CNTs) or nanoparticles on Si wafers in a microwave plasma electron cyclotron resonance chemical vapor deposition (ECR-CVD) system with CH{sub}4 and/or H{sub}2 as source gases. The magnetic catalyst materials, including Fe-Pt, Co-Pt, Nd{sub}2Fe{sub}14B, Fe and Fe-Ni, were first deposited on Si wafers by a physical vapor deposition (PVD) method, with subsequent plasma treatment for nanoparticle transformation. The main process parameters include catalyst materials, hydrogen plasma catalyst pretreatment and deposition temperature. For applications in magnetic media, the process has the following advantages: perpendicularly aligned CNTs or nanoparticles; tip-growth CNTs; well-distributed magnetic particles; detectable magnetic field in each particle; high tube number density (up to 134 Gtubes/inch{sup}2 for Fe-assisted CNTs); favorable catalyst size; higher shape and induced anisotropy; and nanostructures that can be manipulated. The catalyst particle sizes of Fe, Nb{sub}2Fe{sub}14B and Fe-Pt (35-40 nm in diameter) are uniform and greater than but close to the critical optimum size or single domain size, which favor a higher coercive force. The greatest coercive force can reach 750 Oe for Fe-assisted CNTs at a deposition temperature of 715 0C, which is comparable with values reported in the literature. The coercive force difference between the vertical and horizontal directions can reach 300 Oe for Fe-assisted CNTs, and 355 Oe for Nb{sub}2Fe{sub}14B-assisted CNTs.
机译:纳米尺寸的磁性粒子已成功用作催化剂,在CH {sub} 4和CH {sub} 4的微波等离子体电子回旋共振化学气相沉积(ECR-CVD)系统中,在硅片上合成了磁性金属封装的碳纳米管(CNT)或纳米粒子。 /或H {sub} 2作为原料气。首先通过物理气相沉积(PVD)方法将包括Fe-Pt,Co-Pt,Nd {sub} 2Fe {sub} 14B,Fe和Fe-Ni在内的磁性催化剂材料沉积在Si晶片上,随后进行等离子体处理用于纳米粒子转化。主要工艺参数包括催化剂材料,氢等离子体催化剂的预处理和沉积温度。对于磁性介质的应用,该方法具有以下优点:垂直排列的CNT或纳米粒子;尖端生长碳纳米管;分布均匀的磁性颗粒;每个粒子中可检测到的磁场;高管数密度(铁辅助碳纳米管可达134 Gtubes / inch {sup} 2);催化剂尺寸合适;较高的形状和各向异性以及可以操纵的纳米结构。 Fe,Nb {sub} 2Fe {sub} 14B和Fe-Pt的催化剂粒径(直径为35-40 nm)均匀且大于但接近于临界最佳尺寸或单畴尺寸,这有利于更高的矫顽力力。对于Fe辅助的CNT,在715 0C的沉积温度下,最大矫顽力可以达到750 Oe,这与文献报道的值相当。对于Fe辅助的CNT,垂直方向和水平方向的矫顽力差可以达到300 Oe,对于Nb {sub} 2Fe {sub} 14B辅助的CNT,矫顽力差可以达到355 Oe。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号