...
首页> 外文期刊>Development >Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway
【24h】

Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway

机译:不同的非洲爪蟾节点配体顺序诱导中胚层并控制与Wnt / PCP途径平行的胃排卵运动

获取原文
获取原文并翻译 | 示例
           

摘要

The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfr.. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
机译:脊椎动物的身体计划分为两个主要步骤。首先,中胚层诱导可以选出预期的内胚层,中胚层和外胚层祖细胞。其次,这些祖细胞在胃化过程中通过大量复杂的运动在空间上重新排列,从而产生了一个包含三个同心胚芽层的胚,胚层沿着背腹,前后轴和左右轴极化。尽管对中胚层诱导的分子机制了解很多,但控制胃蠕动的信号才刚刚开始被揭示。在脊椎动物中,需要通过节点信号来诱导中胚层,因此无法分析其在后续胃化过程中的潜在作用。使用时间依赖性抑制,我们表明在非洲爪蟾中,节点信号在中胚层诱导和胃形成运动中起顺序作用。节点活动对于轴向中胚层的收敛性扩展和头部中胚层的迁移是必需的。使用吗啉代介导的基因敲低,我们发现节点配体Xnr5和Xnr6在一起是中胚层诱导所必需的,而Xnr1和Xnr2稍后则起着控制胃泌尿运动的作用。这种控制是通过直接调节关键运动效应基因(例如papc,has2和pdgfr)来进行的。然而,有趣的是,Nodal似乎没有动员Wnt / PCP途径,该途径可控制细胞和组织的极性。这项研究为脊椎动物节育过程中由节点信号控制的遗传程序和细胞行为的分析开辟了道路。它还提供了由进化中的基因家族扩展导致的亚功能化的一个很好的例子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号