首页> 外文期刊>Vadose zone journal VZJ >Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils
【24h】

Effect of Particle Size and Soil Compaction on Gas Transport Parameters in Variably Saturated, Sandy Soils

机译:颗粒度和土壤压实度对饱和饱和砂土土壤输气参数的影响

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The soil gas diffusion coefficient (Dp) and air permeability (ka) and their dependency on soil air content (epsilon) control gas diffusion and advection in soils. This study investigated the effects of average particle size (D50) and dry bulk density (Pb) on Dp and ka for six sandy soils under variably saturated conditions. Data showed that particle size markedly affects the effective diameter of the drained pores active in leading gas through the sample at -100 cm H2O of soil water matric potential (calculated from Dp and ka) as well as the average pore diameter at half saturation (calculated from the water retention curve), both exhibiting similar and exponential relationships with D50. Under variably saturated conditions, higher Dp and ka in coarser sand (larger D50) were observed due to rapid gas diffusion and advection through the less tortuous large-pore networks. In addition, soil compaction (larger Pb) simultaneously caused reduced water blockage effects and a reduction of large-pore space, resulting in higher Dp(epsilon) but lower ka(epsilon). Two recent models for Dp(epsilon) and ka(epsilon) were evaluated: the water-induced linear reduction (WLR) model for Dp, and the reference-point power law (RPL) model for ka, with reference point ka set at -100 cm H2O. The performance of both models for the sandy soils (particle size range 0.02-0.9 mm) was improved if the pore connectivity-tortuosity factor and water blockage factors were assumed to be functions of D50 and Pb. Water blockage factors, N for the WLR Dp(epsilon) model and M for the RPL ka(epsilon) model, showed a strong nonlinear relationship (R2 = 0.95) that seems promising for predicting Dp(epsilon) from the more easily measureable ka(epsilon).
机译:土壤气体扩散系数(Dp)和空气渗透率(ka)及其对土壤空气含量(ε)的依赖性控制了土壤中气体的扩散和对流。这项研究调查了六种沙质土壤在可变饱和条件下的平均粒径(D50)和干堆积密度(Pb)对Dp和ka的影响。数据显示,粒径显着影响土壤水基质势(由Dp和ka计算)在-100 cm H2O时通过样品引入的引导气体中的活性排水孔的有效直径,以及半饱和时的平均孔径(计算得出) (根据保水曲线),两者均与D50表现出相似和指数关系。在可变的饱和条件下,由于较快的大孔网络通过快速的气体扩散和平流作用,在较粗的砂土(较大的D50)中观察到较高的Dp和ka。此外,土壤压实(较大的Pb)同时导致减少的阻水作用和减小的大孔隙空间,从而导致较高的Dp(ε)但较低的ka(ε)。对Dp(ε)和ka(ε)的两个最新模型进行了评估:Dp的水诱导线性还原(WLR)模型和ka的参考点幂定律(RPL)模型,参考点ka设置为- 100厘米水如果假设孔隙连通性曲折因子和阻水因子是D50和Pb的函数,则这两种模型在砂土(粒径范围0.02-0.9 mm)上的性能都会得到改善。阻水因子(WLR Dp(ε)模型的N和RPL ka(ε)模型的M)显示出很强的非线性关系(R2 = 0.95),这似乎有望从更容易测量的ka()预测Dp(ε)。 epsilon)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号