...
首页> 外文期刊>Vadose zone journal VZJ >Soil Temperature Variability in Complex Terrain Measured Using Fiber-Optic Distributed Temperature Sensing
【24h】

Soil Temperature Variability in Complex Terrain Measured Using Fiber-Optic Distributed Temperature Sensing

机译:利用光纤分布式温度传感测量复杂地形中的土壤温度变化

获取原文
获取原文并翻译 | 示例
           

摘要

Soil temperature (T-s) exerts critical controls on hydrologic and biogeochemical processes, but the magnitude and nature of T-s variability in a landscape setting are rarely documented. Fiber-optic distributed temperature sensing (DTS) systems potentially measure T-s at high density across a large extent. A fiber-optic cable 771 m long was installed at a depth of 10 cm in contrasting landscape units (LUs) defined by vegetative cover at Upper Sheep Creek in the Reynolds Creek Experimental Watershed (RCEW) and Critical Zone Observatory in Idaho. The purpose was to evaluate the applicability of DTS in remote settings and to characterize Ts variability in complex terrain. Measurement accuracy was similar to other field instruments (+/- 0.4 degrees C), and T-s changes of approximately 0.05 degrees C at a monitoring spatial scale of 1 m were resolved with occasional calibration and an ambient temperature range of 50 degrees C. Differences in solar inputs among LUs were strongly modified by surface conditions. During spatially continuous snow cover, T-s was practically homogeneous across LUs. In the absence of snow cover, daily average T-s was highly variable among LUs due to variations in vegetative cover, with a standard deviation (SD) greater than 5 degrees C, and relatively uniform (SD <1.5 degrees C) within LUs. Mean annual soil temperature differences among LUs of 5.2 degrees C was greater than those of 4.4 degrees C associated with a 910-m elevation difference within the RCEW. In this environment, effective T-s simulation requires representation of relatively small-scale (< 20 m) LUs due to the deterministic spatial variability of T-s.
机译:土壤温度(T-s)对水文和生物地球化学过程起着关键控制作用,但是很少记录到景观环境中T-s变异性的大小和性质。光纤分布式温度感测(DTS)系统可能在很大范围内以高密度测量T-s。在雷诺兹河实验流域(RCEW)和爱达荷州临界区天文台的上绵羊溪的植被覆盖物所界定的景观单元(LUs)中,将771 m长的光纤电缆安装在10 cm的深度处。目的是评估DTS在远程环境中的适用性,并表征复杂地形中Ts的变化性。测量精度类似于其他现场仪器(+/- 0.4摄氏度),并且通过偶尔校准和在50摄氏度的环境温度范围内解决了在1 m的监视空间范围内约0.05摄氏度的Ts变化。 LU之间的太阳能输入受到表面条件的强烈影响。在空间连续的积雪期间,整个LU的T-s实际上是均匀的。在没有积雪的情况下,由于营养覆盖的变化,各LU之间的日平均T-s差异很大,其标准偏差(SD)大于5摄氏度,而LU内相对均匀(SD <1.5摄氏度)。 5.2摄氏度的LU之间的年均土壤温度差异大于4.4摄氏度,与RCEW内910 m的海拔差异相关。在这种环境下,由于T-s的确定性空间变异性,有效的T-s仿真需要表示相对较小的(<20 m)LU。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号