首页> 外文期刊>Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften: ZDGG >Use of cathodoluminescence in heavy mineral analytics illustrated by the stable mineral group monazite-xenotime-zircon from Triassic sandstones of NE-Bavaria
【24h】

Use of cathodoluminescence in heavy mineral analytics illustrated by the stable mineral group monazite-xenotime-zircon from Triassic sandstones of NE-Bavaria

机译:阴极发光在重矿物分析中的应用,由NE-Bavaria三叠纪砂岩中稳定的矿物群独居石-xenotime-锆石说明

获取原文
获取原文并翻译 | 示例
       

摘要

An appropriate technique to distinguish the stable mineral group monazite-xenotime-zircon by means of cathodoluminescence (CL) investigations is of significance in modern heavy mineral analysis since these minerals are widely distributed in sands and sandstones, even if intrastratal dissolution has eliminated less stable minerals like apatites. Therefore the CL heavy mineral analyses may provide useful information on provenance and history of sedimentary sequences. Compared to the well-known blue and yellow CL colours of zircon, monazite and xenotime differ from this optically very similar mineral by the dark-olive and bottle-green CL colour, respectively. The CL spectra of monazite, xenotime and zircon are all dominated by characteristically narrow bands of rare earth elements: Nd3+ and Sm3+ for monazite and Dy3+, Tb3+ and Sm3+ for xenotime and zircon. High contents of rare earth elements in monazite are causal for quenching effects, resulting in a very weak CL appearance. Due to different crystal lattices of all three minerals, the splitting of the multiplet level of equally available elements - Dy3+ and Sm3+ - is different. The distribution of the heavy mineral types detected in heavy mineral separates from Triassic sandstones (Bunter and Keuper) of NE-Bavaria and characterised by CL support the directions of fluvial transport known by analyses of sedimentary structures and petrography to provenance areas with appropriate crystalline rocks (Bohemian Massif and Scandinavian Shield). The distribution of blue and yellow luminescent zircons of about 53% to 47% from the samples of the Bunter indicates source areas with I- to S-I-type granitoids (e.g. Letichtenberg Granite, east of Weiden). The samples from the Burgsandstein show a distribution of blue and yellow luminescent zircons of about 67% to 33%, which points to a stronger influence of the western part of the Fichtelgebirge and the northern Pfalz with their widely distributed S-type granitoids as source areas. In contrast, the zircons from the samples of the Schilfsandstein show a distribution of blue and yellow luminescent zircons of about 45% to 55%, which indicates crystalline source areas with I-type dominated granitoids of the Scandinavian Shield and the Russian Plate.
机译:通过阴极发光(CL)研究区分稳定的独居石-独居时间-锆石矿物的合适技术在现代重矿物分析中具有重要意义,因为即使层内溶解消除了不稳定的矿物,这些矿物也广泛分布在沙子和砂岩中像磷灰石。因此,CL重矿物分析可能会提供有关沉积序列出处和历史的有用信息。与众所周知的锆石的蓝色和黄色CL颜色相比,独居石和xenotime与该光学上非常相似的矿物的区别在于暗橄榄色和瓶绿色CL颜色。独居石,xenotime和锆石的CL光谱均由稀土元素的特征性窄带主导:独居石为Nd3 +和Sm3 +,xenotime和锆石为Dy3 +,Tb3 +和Sm3 +。独居石中高含量的稀土元素会导致淬火效果,导致极弱的CL外观。由于所有三种矿物质的晶格不同,Dy3 +和Sm3 +等均可用元素的多重能级分裂也不同。从NE-Bavaria的三叠纪砂岩(Bunter和Keuper)中分离出的重矿物中检测到的重矿物类型分布,其特征在于CL支持河流运移的方向,这通过分析沉积结构和岩石学到具有适当晶体岩的物源区而获知(波希米亚地块和斯堪的纳维亚盾)。邦特样品中约有53%至47%的蓝色和黄色发光锆石分布表明源区域具有I至S-I型花岗岩(例如Weiden以东的Letichtenberg花岗岩)。 Burgsandstein的样品显示蓝色和黄色发光锆石的分布约为67%至33%,这表明Fichtelgebirge西部和Pfalz北部的影响较大,它们以分布广泛的S型花岗岩为源。相反,来自Schilfsandstein样品的锆石显示蓝色和黄色发光锆石的分布约为45%至55%,这表明具有I型占主导地位的斯堪的纳维亚盾构和俄罗斯板块花岗岩的晶体源区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号