...
首页> 外文期刊>Chemical geology >Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts
【24h】

Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: Implications for the composition of kimberlite melts

机译:修道院金伯利岩中锆石和钛铁矿大晶体的化学磨损:对金伯利岩熔体成分的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ilmenite and zircon megacrysts, among other minerals representing the subcontinental lithospheric mantle, are exclusively delivered to the surface by kimberlite magmas. The intimate association of ilmenite and zircon with their transporting kimberlite melts still remains perplexing, as these minerals do not belong to the kimberlite liquidus assemblage at crustal pressures. The ilmenite and zircon megacrysts from the Monastery kimberlite (South Africa) represent a textbook example of the megacryst suite. The megacrysts show substantial chemical modification along contacts with the host kimberlite. Fine-grained “reaction” assemblages, comprising minerals rich in Zr (baddeleyite and sodium-zirconium silicates) and Ti (Ti-Fe oxides, perovskite, sphene, kassite), are present around zircon and ilmenite, respectively. At the zircon-ilmenite contact, chemical contributions from both minerals are recorded in Zr-Ti-rich phases such as calzirtite and zirkelite. The megacrysts contain crystallised melt pools and secondary melt inclusions in healed fractures; their mineral assemblage is dominated by alkali-bearing phases, including silicates (nepheline, kalsilite, sodalite, phlogopite-tetraferriphlogopite), titanates (priderite, freudenbergite), zirconium silicates (khibinskite, parakeldyshite), carbonates (zemkorite, eitelite), phosphates (apatite, bradleyite, nahpoite), sulfates (aphthitalite) and chlorides (halite, sylvite). These inclusions and melt pools are interpreted to be produced by reaction between the megacrysts and the transporting kimberlite melt, which infiltrated fractures in the megacrysts. Most secondary minerals at contacts with kimberlite require a supply of Ca, which is readily available in the carbonatite component of the kimberlite magma. The enrichment of the encapsulated mineral assemblages in alkali and volatile elements (Na, K, S, Cl) also appears to originate from the kimberlite melt. The similar U-Pb ages and identical Hf-isotope compositions of the megacryst assemblage (89.2 ± 2.8 Ma; εHf ?0.4 to +1.3), the reaction assemblage (98 ± 7 Ma) and the host kimberlite (90 ± 4 Ma; εHf ?0.6 to +1.7), imply their close genetic affinity. Although the megacrysts and kimberlite magma originated from the same source at the same time, the chemical disequilibriumrecorded in the alteration of megacrysts precludes a simple “parental melt-cognate crystal” relationships. This apparent paradox can be resolved by considering the unmixing of a protokimberlite melt into silicate-oxide and carbonate liquids at mantle conditions.
机译:钛铁矿和锆石大晶体以及代表次大陆岩石圈地幔的其他矿物,仅由金伯利岩岩浆输送到地表。钛铁矿和锆石与其运输的金伯利岩熔体的密切联系仍然令人困惑,因为这些矿物在地壳压力下不属于金伯利岩液相线组合。来自金伯利修道院(南非)的钛铁矿和锆石大晶体代表了该大晶体套件的教科书示例。巨晶在与主体金伯利岩接触时显示出实质性的化学修饰。锆石和钛铁矿周围分别存在细颗粒的“反应”组合,其中包括富含Zr(钙铝矾石和钠锆硅酸盐)和Ti(Ti-Fe氧化物,钙钛矿,甲骨粉,钾铁矿)的矿物。在锆石-钛铁矿接触时,两种矿物的化学成分都记录在富含Zr-Ti的相中,如方铅矿和锆石。巨型晶体包含结晶的熔池和愈合裂缝中的次生熔体包裹体。它们的矿物组合主要由含碱相组成,包括硅酸盐(霞石,钾盐,方钠石,金云母-四铁金云母),钛酸盐(普利特石,弗雷登贝格石),硅酸锆(硅藻土,方磷灰石),碳酸盐(沸石,磷灰石,磷灰石) ,布雷德石,钠辉石,硫酸盐(无烟石)和氯化物(卤石,钾盐)。这些夹杂物和熔池被解释为是由大晶体与传输的金伯利岩熔体之间的反应产生的,金伯利岩熔体渗透到了大晶体的裂缝中。与金伯利岩接触的大多数次生矿物都需要提供钙,这在金伯利岩岩浆的碳酸盐岩成分中很容易获得。碱和挥发性元素(Na,K,S,Cl)中封装的矿物组合的富集似乎也源自金伯利岩熔体。大晶体组合的相似的U-Pb年龄和相同的Hf同位素组成(89.2±2.8 Ma;εHf≥0.4至+1.3),反应组合(98±7 Ma)和主体金伯利岩(90±4 Ma;εHf 0.6至+1.7),表示它们具有密切的遗传亲和力。尽管巨晶和金伯利岩岩浆同时起源于同一来源,但在巨晶变化中所记录的化学失衡排除了简单的“母体熔体-同源晶体”关系。这种明显的矛盾可以通过考虑将原金伯利岩熔体在地幔条件下分解为硅酸盐氧化物和碳酸盐液体来解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号