...
首页> 外文期刊>Chemical geology >Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions
【24h】

Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions

机译:静态和动态条件下扩散控制的晶体生长过程中的非平衡同位素和元素分馏

获取原文
获取原文并翻译 | 示例
           

摘要

Rapid crystal growth can lead to disequilibrium uptake of growth-medium components whose diffusivities limit their dispersal near an advancing crystal interface. The recent documentation of an isotope mass effect on diffusion raises the possibility that even isotope ratios in crystals may be subject to this effect. Building upon existing 1-dimensional treatments, we describe a numerical modeling approach in which a spherical grain grows at the center of an infinite spherical medium of predetermined composition. Local equilibrium at the interface between the crystal and the growth medium is assumed, but the concentration of the species of interest in the growth medium is allowed to vary near the interface as a consequence of slow diffusion combined with rejection from (or incorporation within) the growing crystal. The disequilibrium uptake of elements and isotopes depends upon the ratio of crystal growth rate (R) to diffusivity in the growth medium (D). Conditions of fast mineral growth in a viscous magma-e.g., in lava lakes or small igneous bodies-result in accumulation of elements with K 1 (or depletion of elements with K 1) near the growing mineral interface, forming a compositional boundary layer in the growth medium. In a static system, the magnitude of this compositional perturbation depends critically upon the diffusivity of the element or isotope of interest in the growth medium. If the system is dynamic-i.e., experiencing free or forced convection-then the vigor of convection also affects behavior. Significant fractionation of elements and isotopes is predicted to occur within the boundary layer during progressive crystal growth because diffusion rates of individual elements vary with size and charge and those of isotopes of the same element depend on their masses. Local equilibrium at the interface between the crystal and its growth medium means that a fast-growing crystal will record this fractionation in its resulting radial concentration profile. If the boundary-layer thickness, BL, is small (say, <100 mu m) and the equilibrium partition coefficient, K, is <0.5, then a first-order estimate of the steady-state isotopic fractionation in a growing crystal is given by delta(parts per thousand) = 1000 . (1 - D-A/D-B) . (R.BL/D-A) . (1-K), where D-A and D-B are the diffusivities of the faster and slower species in the growth medium and delta is the deviation from the equilibrium isotope ratio in parts per thousand. For isotopes of a single element, D-A and D-B Will generally differ by <1%, but plausible R/D ratios can nevertheless lead to deviations from equilibrium between the crystal and the growth medium of up to similar to 3 parts per thousand. The model may bear on disequilibrium crystal-growth phenomena in a variety of geologic settings-including element- and isotopic profiles in crystals of both igneous and metamorphic rocks. It is suggested that compositional core to rim profile of a crystal may be a proxy for the near surface composition of the growth medium during crystal growth. Isotopic effects are discussed in detail because these have not been addressed previously; igneous systems are emphasized because higher crystal growth rates are more conducive to disequilibrium (including in the compositions of melt inclusions).
机译:快速的晶体生长会导致生长介质成分的不平衡吸收,其扩散性限制了它们在前进的晶体界面附近的分散。同位素质量效应对扩散的最新记录增加了甚至晶体中的同位素比率也可能受到这种效应的可能性。基于现有的一维处理,我们描述了一种数值建模方法,其中球形晶粒生长在具有预定组成的无限球形介质的中心。假定在晶体和生长介质之间的界面处达到局部平衡,但是由于缓慢扩散以及从(或掺入)到晶体中的结合,允许在生长介质中感兴趣的物质的浓度在界面附近发生变化。成长中的水晶。元素和同位素的不平衡吸收取决于晶体生长速率(R)与生长介质中扩散系数(D)的比率。粘性岩浆中快速矿物生长的条件,例如在熔岩湖或小型火成岩中,导致在生长的矿物界面附近积累了K 1(或元素K 1耗尽)的元素,形成了一种成分生长介质中的边界层。在静态系统中,这种成分扰动的大小主要取决于生长介质中目标元素或同位素的扩散率。如果系统是动态的-即经历自由对流或强制对流-那么对流的活力也会影响行为。预测元素和同位素在分步晶体生长过程中会在边界层内发生重大分馏,因为各个元素的扩散速率随大小和电荷而变化,而同一元素的同位素的扩散速率则取决于其质量。晶体与其生长介质之间的界面处的局部平衡意味着快速生长的晶体将在其最终的径向浓度曲线中记录该分馏。如果边界层厚度BL小(例如<100μm)并且平衡分配系数K <0.5,则可以得出生长晶体中稳态同位素分馏的一阶估计值。按delta(千分之一)= 1000。 (1-D-A / D-B)。 (R.BL / D-A)。 (1-K),其中D-A和D-B是生长介质中快慢物种的扩散率,而δ是相对于平衡同位素比的千分之几的偏差。对于单个元素的同位素,D-A和D-B通常相差<1%,但是合理的R / D比仍然可能导致晶体和生长培养基之间的平衡偏差高达千分之三。该模型可能在各种地质环境中都存在不平衡的晶体生长现象,包括火成岩和变质岩晶体中的元素和同位素剖面。建议晶体的核心到边缘轮廓的组成可能是晶体生长期间生长培养基的近表面组成的代表。由于以前没有解决同位素效应,因此将详细讨论。强调火成体系是因为较高的晶体生长速率更有利于不平衡(包括熔体夹杂物的组成)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号