...
首页> 外文期刊>Chemical geology >Effect of oxygen co-injected with carbon dioxide on Gothic shale caprock-CO_2-brine interaction during geologic carbon sequestration
【24h】

Effect of oxygen co-injected with carbon dioxide on Gothic shale caprock-CO_2-brine interaction during geologic carbon sequestration

机译:二氧化碳共注入氧气对地质固碳过程中哥特页岩盖层-CO_2-盐水相互作用的影响

获取原文
获取原文并翻译 | 示例

摘要

Co-injection of oxygen, a significant component in CO_2 streams produced by the oxyfuel combustion process, can cause a significant alteration of the redox state in deep geologic formations during geologic carbon sequestration. The potential impact of co-injected oxygen on the interaction between synthetic CO_2-brine (0.1M NaCl) and shale caprock (Gothic shale from the Aneth Unit in Utah) and mobilization of trace metals was investigated at ~10MPa and ~75°C. A range of relative volume percentages of O_2 to CO_2 (0, 1, 4 and 8%) were used in these experiments to address the effect of oxygen on shale-CO_2-brine interaction under various conditions. Major mineral phases in Gothic shale are quartz, calcite, dolomite, montmorillonite, and pyrite. During Gothic shale-CO_2-brine interaction in the presence of oxygen, pyrite oxidation occurred extensively and caused enhanced dissolution of calcite and dolomite. Pyrite oxidation and calcite dissolution subsequently resulted in the precipitation of Fe(III) oxides and gypsum (CaSO_4·2H_2O). In the presence of oxygen, dissolved Mn and Ni were elevated because of oxidative dissolution of pyrite. The mobility of dissolved Ba was controlled by barite (BaSO_4) precipitation in the presence of oxygen. Dissolved U in the experimental brines increased to ~8-14μg/L, with concentrations being slightly higher in the absence of oxygen than in the presence of oxygen. Experimental and modeling results indicate the interaction between shale caprock and oxygen co-injected with CO_2 during geologic carbon sequestration can exert significant impacts on brine pH, solubility of carbonate minerals, stability of sulfide minerals, and mobility of trace metals. The major impact of oxygen is most likely to occur in the zone near CO_2 injection wells where impurity gases can accumulate. Oxygen in CO_2-brine migrating away from the injection well will be continually consumed through the reactions with sulfide minerals in deep geologic formations.
机译:共注入氧气是氧燃料燃烧过程中产生的CO_2物流中的重要成分,在地质固碳过程中,可引起深层地质构造中氧化还原状态的显着改变。研究了共注入氧气对合成CO_2-盐水(0.1M NaCl)和页岩盖层(来自犹他州Aneth单位的哥特页岩)和微量金属的迁移之间的相互作用的潜在影响,该过程在〜10MPa和〜75°C下进行。在这些实验中,使用了一系列O_2与CO_2的相对体积百分比(0、1、4和8%),以解决氧气在各种条件下对页岩-CO_2-盐水相互作用的影响。哥特页岩中的主要矿物相是石英,方解石,白云石,蒙脱石和黄铁矿。在氧气存在下的哥特式页岩-CO_2-盐水相互作用中,黄铁矿氧化广泛发生,并导致方解石和白云石的溶解增强。黄铁矿的氧化和方解石的溶解随后导致Fe(III)氧化物和石膏(CaSO_4·2H_2O)的沉淀。在氧的存在下,由于黄铁矿的氧化溶解,溶解的Mn和Ni升高。在氧气存在下,重晶石(BaSO_4)沉淀控制了溶解的Ba的迁移率。实验盐水中溶解的U增至〜8-14μg/ L,无氧条件下的浓度略高于有氧条件下的浓度。实验和模拟结果表明,在地质固碳过程中,页岩盖岩与CO_2共注入的氧气之间的相互作用会对盐水pH值,碳酸盐矿物的溶解度,硫化物矿物的稳定性以及微量金属的流动性产生重大影响。氧气的主要影响最有可能发生在CO_2注入井附近的区域,在该区域中可能会积聚杂质气体。通过与深部地质构造中的硫化物矿物反应,将不断消耗从注入井中迁移出来的CO_2-盐水中的氧气。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号