...
首页> 外文期刊>Hydrology and Earth System Sciences >A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA
【24h】

A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA

机译:用于表征美国西北太平洋夏季水流对气候变暖敏感性的水文地质框架

获取原文
获取原文并翻译 | 示例

摘要

Summer streamflows in the Pacific Northwest are largely derived from melting snow and groundwater discharge. As the climate warms, diminishing snowpack and earlier snowmelt will cause reductions in summer streamflow. Most regional-scale assessments of climate change impacts on streamflow use downscaled temperature and precipitation projections from general circulation models (GCMs) coupled with large-scale hydrologic models. Here we develop and apply an analytical hydrogeologic framework for characterizing summer streamflow sensitivity to a change in the timing and magnitude of recharge in a spatially explicit fashion. In particular, we incorporate the role of deep groundwater, which large-scale hydrologic models generally fail to capture, into streamflow sensitivity assessments. We validate our analytical streamflow sensitivities against two empirical measures of sensitivity derived using historical observations of temperature, precipitation, and streamflow from 217 watersheds. In general, empirically and analytically derived streamflow sensitivity values correspond. Although the selected watersheds cover a range of hydrologic regimes (e.g., rain-dominated, mixture of rain and snow, and snowdominated), sensitivity validation was primarily driven by the snow-dominated watersheds, which are subjected to a wider range of change in recharge timing and magnitude as a result of increased temperature. Overall, two patterns emerge from this analysis: first, areas with high streamflow sensitivity also have higher summer streamflows as compared to lowsensitivity areas. Second, the level of sensitivity and spatial extent of highly sensitive areas diminishes over time as the summer progresses. Results of this analysis point to a robust, practical, and scalable approach that can help assess risk at the landscape scale, complement the downscaling approach, be applied to any climate scenario of interest, and provide a framework to assist land and water managers in adapting to an uncertain and potentially challenging future.
机译:西北太平洋的夏季水流主要来自融雪和地下水排放。随着气候变暖,积雪减少和融雪较早将导致夏季水流减少。大多数区域尺度的气候变化对水流影响的评估都使用了通用环流模型(GCM)结合大规模水文模型的降温后的温度和降水预测。在这里,我们开发并应用了一种分析性水文地质框架,用于以空间上明确的方式表征夏季水流敏感性,以补给时间和补给量的变化。特别是,我们将深层地下水的作用纳入了流量敏感性评估中,而大型水文模型通常无法捕获深层地下水的作用。我们根据对217个流域的温度,降水和水流的历史观测得出的灵敏度的两个经验度量,验证了我们对水流敏感性的分析。通常,根据经验和分析得出的流量灵敏度值相对应。尽管选定的集水区涵盖了一系列水文状况(例如,雨水为主,雨雪混合和降雪为主),但灵敏度验证主要是由以雪为主的分水岭驱动的,这些分水岭的补给变化范围更大由于温度升高而产生的时间和幅度。总体而言,此分析得出两种模式:首先,与低敏感度地区相比,高水流敏感性地区的夏季水流也更高。其次,随着夏季的进行,高度敏感区域的敏感度水平和空间范围会随着时间的推移而降低。分析结果表明,该方法可靠,实用,可扩展,可以帮助评估景观尺度的风险,补充缩小规模的方法,适用于任何感兴趣的气候情景,并提供一个框架来协助土地和水管理者适应走向不确定且可能具有挑战性的未来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号