...
首页> 外文期刊>Chemical geology >Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: The effect of Fe oxidation on the weathering of phyllosilicates
【24h】

Oxidative biotransformation of biotite and glauconite by alkaliphilic anaerobes: The effect of Fe oxidation on the weathering of phyllosilicates

机译:嗜碱厌氧菌对黑云母和青绿石的氧化生物转化:铁的氧化对页硅酸盐风化的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Two alkaliphilic anaerobic bacteria, namely, the dissimilatory iron-reducer Geoalkalibacter ferrihydriticus and the fermentative hydrolytic Clostridium alkalicellulosi, along with their co-cultures, are studied to examine their ability to release Si and Fe from two main Fe-containing phyllosilicates in Earth's crust: biotite and glauconite. The formation of magnetically ordered phase(s) within 200 days of incubation was only observed in the presence of G. ferrihydriticus whether in a mono- or co-culture but not in the abiotic controls or a pure culture of C. alkalicellulosi. The co-culture of these organisms could represent a simple trophic chain in which C. alkalicellulosi decomposed microcrystalline cellulose to produce organic acids and ethanol, while G. ferrihydriticus, as we expected, utilized these products and reduces Fe(III) in phyllosilicate lattices. Unexpectedly, G. ferrihydriticus did not utilize but instead produced an additional 3 mM of acetate during growth with phyllosilicates. An analysis of the Mossbauer spectra of biotite and glauconite that were weathered in the presence of G. ferrihydriticus revealed magnetically ordered phases that formed by Fe2+ oxidation rather than by Fe3+ reduction. The only possible explanation of this phenomenon could be in the ability of G. ferrihydriticus to produce acetate during anaerobic Fe2+ oxidation with carbonate as an electron acceptor. Thermodynamic calculations show the possibility of such a reaction. Thus, microorganisms with respiratory metabolism could play an active role in the bioweathering of phyllosilicates under alkaline anaerobic conditions. The bacterial anaerobic oxidation of ferrous iron with carbonate as an electron donor is supposed to have played a significant role in ancient environments, serving as one of the causes of banded iron formations. (C) 2016 Elsevier B.V. All rights reserved.
机译:研究了两种嗜碱厌氧细菌,即异化铁还原剂Geoalkalibacter ferrihydriticus和发酵水解碱梭菌,以及它们的共培养物,以研究它们从地壳中两种主要的含Fe层状硅酸盐中释放Si和Fe的能力:黑云母和青绿石。仅在单培养或共培养中存在铁水假单胞菌的情况下,才在孵育200天之内观察到磁性有序相的形成,而在非生物对照或碱性纤维梭菌的纯培养物中则没有观察到。这些生物体的共培养可能代表一条简单的营养链,其中碱液梭状芽胞杆菌分解微晶纤维素以产生有机酸和乙醇,而正如我们期望的那样,铁三水杆菌利用了这些产物并还原了页硅酸盐晶格中的Fe(III)。出乎意料的是,G。ferrihydriticus没有利用,而是在与页硅酸盐生长期间产生了另外的3 mM乙酸盐。对黑铁矿存在的风化的黑云母和青石岩的Mossbauer光谱进行分析,揭示了由Fe2 +氧化而不是Fe3 +还原形成的磁性有序相。这种现象的唯一可能解释是,铁碳假丝酵母在以碳酸盐为电子受体的厌氧Fe2 +氧化过程中产生乙酸盐的能力。热力学计算表明发生这种反应的可能性。因此,具有呼吸代谢的微生物可以在碱性厌氧条件下在页硅酸盐的生物风化中发挥积极作用。碳酸盐作为电子给体对亚铁的细菌厌氧氧化被认为在古代环境中起着重要作用,是形成带状铁的原因之一。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号