首页> 外文期刊>Chemical geology >Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications
【24h】

Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications

机译:批处理规模的生物地球化学反应和相关的同位素分馏的集成模型:监测增强的生物脱硝应用的工具

获取原文
获取原文并翻译 | 示例
           

摘要

Enhanced in-situ biodenitrification (EIB) is a potential technology for remediating nitrate-polluted groundwater. EIB aims to create optimal biodenitrification conditions through the addition of carbon sources, enabling the autochthonous microbial community to degrade nitrate via different redox pathways. Biogeochemical numerical models are useful tools for predicting and designing such biodenitrification applications. Compound-specific stable isotope analysis (CSIA) is another valuablemethod for determining the degree of nitrate transformation. Therefore, incorporating isotope fractionation in biogeochemical models combines the two tools and is a key step in the development of reactive transport models of EIB under field conditions. In this work,we developed such an integrated model using the Phreeqc code and calibrated the modelwith batch scale experimental data using either ethanol or glucose as external carbon sources. The model included the following: microbiological processes -exogenous and endogenous nitrate respiration coupled to microbial growth and decay; geochemical processes-precipitation or dissolution of calcite; and isotopic fractionation-δ~(15) N-NO~-_3, δ~(18) O-NO~-_3, and δ~(13) C-DIC, incorporating the full δ~(13) C isotope geochemistry involved in EIB. The modeled results fit well with the hydrochemical and isotopic experimental data. The model also incorporated nitrite accumulation observed during the glucose experiment. The biogeochemical model indicates that, depending on the added carbon source, calcite precipitates (using ethanol) or dissolves (using glucose). In both cases, changes in hydraulic conductivity can be induced for actual and longterm EIB applications. The incorporation of isotope fractionation in the model better enables to account for other natural attenuation processes, such as dilution and dispersion, in EIB applications at field scale. Both calibrated enrichment factors (+8‰for ethanol and+17‰for glucose) suggest that an inverse fractionation effect occurred (in which the heavy isotope reacts faster than the light isotope) during their oxidation.
机译:增强的原位生物脱氮(EIB)是修复硝酸盐污染的地下水的一项潜在技术。 EIB旨在通过添加碳源来创造最佳的生物脱氮条件,使本地微生物群落能够通过不同的氧化还原途径降解硝酸盐。生物地球化学数值模型是预测和设计此类生物脱氮应用的有用工具。化合物特异性稳定同位素分析(CSIA)是确定硝酸盐转化程度的另一种有价值的方法。因此,在生物地球化学模型中结合同位素分馏技术将两种工具结合在一起,是在现场条件下开发EIB反应性运输模型的关键一步。在这项工作中,我们使用Phreeqc代码开发了这样的集成模型,并使用乙醇或葡萄糖作为外部碳源,使用批处理规模的实验数据对模型进行了校准。该模型包括以下内容:微生物过程-外源和内源硝酸盐呼吸与微生物生长和衰弱相关;地球化学过程-方解石的沉淀或溶解;和同位素分馏-δ〜(15)N-NO〜-_3,δ〜(18)O-NO〜-_3和δ〜(13)C-DIC,并结合了所涉及的全部δ〜(13)C同位素地球化学在EIB中。建模结果与水化学和同位素实验数据非常吻合。该模型还结合了在葡萄糖实验中观察到的亚硝酸盐积累。生物地球化学模型表明,根据添加的碳源,方解石会沉淀(使用乙醇)或溶解(使用葡萄糖)。在这两种情况下,实际和长期的EIB应用都会引起水力传导率的变化。在现场规模的EIB应用中,将同位素分馏纳入模型可以更好地说明其他自然衰减过程,例如稀释和分散。两种校准的富集因子(乙醇为+ 8‰,葡萄糖为+ 17‰)都表明在其氧化过程中发生了逆分馏作用(其中重同位素的反应快于轻同位素的反应)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号