首页> 外文期刊>Human Molecular Genetics >Epigenetic reprogramming in mammals
【24h】

Epigenetic reprogramming in mammals

机译:哺乳动物的表观遗传重编程

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Epigenetic marking systems confer stability of gene expression during mammalian development. Genome-wide epigenetic reprogramming occurs at stages when developmental potency of cells changes. At fertilization, the paternal genome exchanges protamines for histones, undergoes DNA demethylation, and acquires histone modifications, whereas the maternal genome appears epigenetically more static. During preimplanta-tion development, there is passive DNA demethylation and further reorganization of histone modifications. In blastocysts, embryonic and extraembryonic lineages first show different epigenetic marks. This epigenetic reprogramming is likely to be needed for totipotency, correct initiation of embryonic gene expression, and early lineage development in the embryo. Comparative work demonstrates reprogramming in all mammalian species analysed, but the extent and timing varies, consistent with notable differences between species during preimplantation development. Parental imprinting marks originate in sperm and oocytes and are generally protected from this genome-wide reprogramming. Early primordial germ cells possess imprinting marks similar to those of somatic cells. However, rapid DNA demethylation after midgestation erases these parental imprints, in preparation for sex-specific de novo methylation during gametogenesis. Aberrant reprogramming of somatic epigenetic marks after somatic cell nuclear transfer leads to epigenetic defects in cloned embryos and stem cells. Links between epigenetic marking systems appear to be developmentally regulated contributing to plasticity. A number of activities that confer epigenetic marks are firmly established, while for those that remove marks, particularly methylation, some interesting candidates have emerged recently which need thorough testing in vivo. A mechanistic understanding of reprogramming will be crucial for medical applications of stem cell technology.
机译:表观遗传标记系统赋予哺乳动物发育过程中基因表达的稳定性。全基因组表观遗传重编程发生在细胞发育能力改变的阶段。受精时,父本基因组将鱼精蛋白交换为组蛋白,经历DNA脱甲基化,并获得组蛋白修饰,而母本基因组在表观遗传上显得更静态。在植入前的发育过程中,存在被动的DNA去甲基化和组蛋白修饰的进一步重组。在胚泡中,胚胎和胚外谱系首先显示出不同的表观遗传标记。全能性,胚胎基因表达的正确启动以及胚胎的早期谱系发育可能需要这种表观遗传重编程。比较工作表明,所有已分析的哺乳动物物种都进行了重新编程,但是范围和时机不同,这与植入前发育过程中物种之间的显着差异一致。父母的印记标记起源于精子和卵母细胞,并且通常受到这种全基因组重编程保护。早期的原始生殖细胞具有与体细胞相似的印记标记。但是,妊娠期后快速的DNA脱甲基化消除了这些父母的印记,为配子发生期间的性别特异性从头甲基化做准备。体细胞核转移后体细胞表观遗传标记的异常重编程导致克隆的胚胎和干细胞中的表观遗传缺陷。表观遗传标记系统之间的联系似乎受到发展调节,从而促进了可塑性。牢固地建立了许多赋予表观遗传标记的活动,而对于那些去除标记,特别是甲基化的活动,最近出现了一些有趣的候选物,需要在体内进行全面测试。对重编程的机械理解对于干细胞技术的医学应用至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号