...
首页> 外文期刊>Chemical geology >Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: Constraints on crystallization temperatures of carbonatite magmas
【24h】

Oxygen isotope composition of carbonates, silicates, and oxides in selected carbonatites: Constraints on crystallization temperatures of carbonatite magmas

机译:某些碳酸盐岩中碳酸盐,硅酸盐和氧化物的氧同位素组成:对碳酸盐岩浆岩结晶温度的限制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Oxygen isotope compositions and fractionations between calcite (Cc) and magnetite (Mt), diopside-rich clinopyroxene (Di), monticellite (Mnt), kimzeyite-rich gamet (Gt), and biotite (Bt) were measured for carbonatites from Oka (Canada), Magnet Cove (USA), Jacupiranga (Brazil), and Essonville (Canada), to obtain crystallization temperatures and explore the crystallization history of carbonatites. The highest isotopic temperatures are obtained from Cc-Mt fractionations from Oka (745-770 degreesC) and Cc-Mnt fractionations from Magnet Cove (700 and 760 degreesC). Cc-Mt temperatures for very coarse-grained, euhedral magnetite phenocrysts and calcite from Jacupiranga are 700 degreesC. In samples that contain diopside and magnetite, the Cc-Mt temperatures are always higher than Cc-Di temperatures. This difference is consistent with crystallization of magnetite before diopside, minor retrograde resetting of magnetite isotopic compositions, and the order of crystallization inferred from inclusions of Mt in Di. Cc-Mt, Cc-Di, and Cc-Mnt fractionations are thus interpreted to represent those established during crystallization at rapid cooling rates (10(3)-10(4) degreesC/my). Diffusion model calculations indicate that at slower post-crystallization cooling rates (10-10(2) degreesC/my), magnetite compositions should experience significant isotopic resetting by diffusional exchange with Cc, Bt, and apatite, and yield lower temperatures than Cc-Di. Cc-Bt fractionations correspond to the lowest temperatures (440-560 degreesC). Although some of these are relatively high isotopic temperatures for biotite, they most likely represent those established during subsolidus retrograde exchange between biotite and calcite during rapid subsolidus cooling. (C) 2003 Elsevier Science B.V. All rights reserved. [References: 56]
机译:测量了来自Oka(加拿大)的碳酸盐岩中的氧同位素组成和方解石(Cc)与磁铁矿(Mt),透辉石富集的斜辉石(Di),蒙脱石(Mnt),富含金合沸石的配子(Gt)和黑云母(Bt)之间的分离。 ),Magnet Cove(美国),Jacupiranga(巴西)和Essonville(加拿大)来获得结晶温度并探索碳酸盐岩的结晶历史。最高同位素温度来自Oka的Cc-Mt分馏(745-770℃)和Magnet Cove的Cc-Mnt分馏(700和760℃)。 Jacupiranga的非常粗粒的,共面的磁铁矿隐晶和方解石的Cc-Mt温度为700摄氏度。在含有透辉石和磁铁矿的样品中,Cc-Mt温度始终高于Cc-Di温度。这种差异与透辉石之前磁铁矿的结晶,磁铁矿同位素组成的轻微逆行重置以及从Di中Mt夹杂物推断的结晶顺序是一致的。因此,将Cc-Mt,Cc-Di和Cc-Mnt馏分解释为代表在结晶过程中以快速冷却速率(10(3)-10(4)℃/ my)建立的馏分。扩散模型计算表明,在较低的结晶后冷却速率(10-10(2)℃/ my)下,磁铁矿成分应通过与Cc,Bt和磷灰石的扩散交换而经历显着的同位素复位,并且产生的温度低于Cc-Di 。 Cc-Bt分馏对应于最低温度(440-560摄氏度)。尽管其中一些相对于黑云母的同位素温度较高,但它们最有可能代表在快速亚固相线冷却过程中黑云母与方解石在亚固相线逆行交换过程中建立的温度。 (C)2003 Elsevier Science B.V.保留所有权利。 [参考:56]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号